Abstract
The theory of Topological Modular Forms suggests the existence of deformation invariants for two-dimensional supersymmetric field theories that are more refined than the standard elliptic genus. In this note we give a physical definition of some of these invariants. The theory of mock modular forms makes a surprise appearance, shedding light on the integrality properties of some well-known examples.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S.K. Ashok, N. Doroud and J. Troost, Localization and real Jacobi forms, JHEP 04 (2014) 119 [arXiv:1311.1110] [INSPIRE].
M.F. Atiyah, V.K. Patodi and I.M. Singer, Spectral Asymmetry and Riemannian Geometry, Bull. London Math. Soc. 5 (1973) 229.
S.K. Ashok and J. Troost, A Twisted Non-compact Elliptic Genus, JHEP 03 (2011) 067 [arXiv:1101.1059] [INSPIRE].
D. Berwick-Evans, An effective field theory model for differential elliptic cohomology at the Tate curve, arXiv:1510.06464 [INSPIRE].
D. Berwick-Evans, How do field theories detect the torsion in topological modular forms?, arXiv:2303.09138 [INSPIRE].
U. Bunke and N. Naumann, Secondary invariants for string bordism and topological modular forms, Bull. Sci. Math. 138 (2014) 912 [arXiv:0912.4875].
J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, with computational assistance from J.G. Thackray, Oxford University Press, Eynsham (1985).
M.C.N. Cheng, J.F.R. Duncan and J.A. Harvey, Umbral Moonshine, Commun. Num. Theor. Phys. 08 (2014) 101 [arXiv:1204.2779] [INSPIRE].
C.L. Douglas, J. Francis, A.G. Henriques and M.A. Hill eds., Topological modular forms, volume 201 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, U.S.A. (2014).
J.F. Duncan, Super-moonshine for Conway’s largest sporadic group, Duke Math. J. 139 (2007) 255.
T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 Surface and the Mathieu group M24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].
T. Eguchi and Y. Sugawara, Non-holomorphic Modular Forms and SL(2, ℝ)/U(1) Superconformal Field Theory, JHEP 03 (2011) 107 [arXiv:1012.5721] [INSPIRE].
T. Eguchi, Y. Sugawara and A. Taormina, Liouville field, modular forms and elliptic genera, JHEP 03 (2007) 119 [hep-th/0611338] [INSPIRE].
D.S. Freed and C. Teleman, Relative quantum field theory, Commun. Math. Phys. 326 (2014) 459 [arXiv:1212.1692] [INSPIRE].
D. Gaiotto and T. Johnson-Freyd, Holomorphic SCFTs with small index, Can. J. Math. 74 (2022) 573 [arXiv:1811.00589] [INSPIRE].
D. Gaiotto, T. Johnson-Freyd and E. Witten, A Note On Some Minimally Supersymmetric Models In Two Dimensions, arXiv:1902.10249 [INSPIRE].
R.K. Gupta and S. Murthy, Squashed toric sigma models and mock modular forms, arXiv:1705.00649 [https://doi.org/10.1007/s00220-017-3069-5] [INSPIRE].
P. Goddard and D.I. Olive, Kac-Moody Algebras, Conformal Symmetry and Critical Exponents, Nucl. Phys. B 257 (1985) 226 [INSPIRE].
S. Gukov, D. Pei, P. Putrov and C. Vafa, 4-manifolds and topological modular forms, JHEP 05 (2021) 084 [arXiv:1811.07884] [INSPIRE].
Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014) 115141 [arXiv:1201.2648] [INSPIRE].
K. Hori and A. Kapustin, Duality of the fermionic 2-D black hole and N=2 liouville theory as mirror symmetry, JHEP 08 (2001) 045 [hep-th/0104202] [INSPIRE].
J.A. Harvey, S. Murthy and C. Nazaroglu, ADE Double Scaled Little String Theories, Mock Modular Forms and Umbral Moonshine, JHEP 05 (2015) 126 [arXiv:1410.6174] [INSPIRE].
M.J. Hopkins, Algebraic topology and modular forms, in Proceedings of the International Congress of Mathematicians, Vol. I, Beijing (2002), p. 291–317. Higher Ed. Press, Beijing (2002) [math/0212397].
H. Hohnhold, S. Stolz and P. Teichner, From minimal geodesics to supersymmetric field theories, In A celebration of the mathematical legacy of Raoul Bott, volume 50 of CRM Proc. Lecture Notes, p. 207–274, American Mathematical Society, Providence, RI, U.S.A. (2010).
T. Johnson-Freyd and D. Treumann, H4(Co0; Z) = Z/24, Int. Math. Res. Not. 2020 (2020) 7873 [arXiv:1707.07587] [INSPIRE].
A. Karch, D. Tong and C. Turner, A Web of 2d Dualities: Z2 Gauge Fields and Arf Invariants, SciPost Phys. 7 (2019) 007 [arXiv:1902.05550] [INSPIRE].
J. Manschot, Vafa-Witten Theory and Iterated Integrals of Modular Forms, Commun. Math. Phys. 371 (2019) 787 [arXiv:1709.10098] [INSPIRE].
J. Manschot and G.W. Moore, A Modern Farey Tail, Commun. Num. Theor. Phys. 4 (2010) 103 [arXiv:0712.0573] [INSPIRE].
G.W. Moore and P.C. Nelson, The Etiology of σ Model Anomalies, Commun. Math. Phys. 100 (1985) 83 [INSPIRE].
J.A. Minahan, D. Nemeschansky, C. Vafa and N.P. Warner, E strings and N = 4 topological Yang-Mills theories, Nucl. Phys. B 527 (1998) 581 [hep-th/9802168] [INSPIRE].
S. Murthy, A holomorphic anomaly in the elliptic genus, JHEP 06 (2014) 165 [arXiv:1311.0918] [INSPIRE].
G. Segal, Elliptic cohomology (after Landweber-Stong, Ochanine, Witten and others), Astérisque, tome 161–162 (1988), Séminaire Bourbaki, vol. 1987/88, Exp. No. 695, p. 187–201 [http://www.numdam.org/item?id=SB_1987-1988_30_187_0].
S. Stolz and P. Teichner, What is an elliptic object?, in Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., Vol. 38, Cambridge University Press (2004), p. 247–343 [https://doi.org/10.1017/cbo9780511526398.013].
S. Stolz and P. Teichner, Supersymmetric field theories and generalized cohomology, arXiv:1108.0189 [INSPIRE].
E. Witten, Elliptic Genera and Quantum Field Theory, Commun. Math. Phys. 109 (1987) 525 [INSPIRE].
E. Witten, The index of the Dirac operator in loop space, Lect. Notes Math. 1326 (1988) 161 [INSPIRE].
E. Witten, World sheet corrections via D instantons, JHEP 02 (2000) 030 [hep-th/9907041] [INSPIRE].
Acknowledgments
Research at the Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development and Innovation. We thank D. Berwick-Evans, S. Murthy, and E. Witten for discussions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1904.05788
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gaiotto, D., Johnson-Freyd, T. Mock modularity and a secondary elliptic genus. J. High Energ. Phys. 2023, 94 (2023). https://doi.org/10.1007/JHEP08(2023)094
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2023)094