Abstract
The conifold is a basic example of a noncompact Calabi-Yau threefold that admits a simple flop, and in M-theory, gives rise to a 5d hypermultiplet at low energies, realized by an M2-brane wrapped on the vanishing sphere. We develop a novel gauge-theoretic method to construct new classes of examples that generalize the simple flop to so-called length ℓ = 1, . . . , 6. The method allows us to naturally read off the Gopakumar-Vafa invariants. Although they share similar properties to the beloved conifold, these threefolds are expected to admit M2-bound states of higher degree ℓ. We demonstrate this through our computations of the GV invariants. Furthermore we characterize the associated Higgs branches by computing their dimensions and flavor groups. With our techniques we extract more refined data such as the charges of the hypers under the flavor group.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for weyl groups, J. Alg. Geom. 1 (1992) 449 [alg-geom/9202002].
A. Collinucci, A. Sangiovanni and R. Valandro, Genus zero Gopakumar-Vafa invariants from open strings, JHEP 09 (2021) 059 [arXiv:2104.14493] [INSPIRE].
A. Collinucci, M. De Marco, A. Sangiovanni and R. Valandro, Higgs branches of 5d rank-zero theories from geometry, JHEP 10 (2021) 018 [arXiv:2105.12177] [INSPIRE].
C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs branches from canonical singularities. Part 0, JHEP 02 (2021) 003 [arXiv:2007.15600] [INSPIRE].
C. Closset, S. Giacomelli, S. Schäfer-Nameki and Y.-N. Wang, 5d and 4d SCFTs: canonical singularities, trinions and S-dualities, JHEP 05 (2021) 274 [arXiv:2012.12827] [INSPIRE].
C. Closset, S. Schäfer-Nameki and Y.-N. Wang, Coulomb and Higgs branches from canonical singularities. Part I. Hypersurfaces with smooth Calabi-Yau resolutions, JHEP 04 (2022) 061 [arXiv:2111.13564] [INSPIRE].
C. Curto and D. Morrison, Threefold flops via matrix factorization, J. Alg. Geom. 22 (2013) 599.
J. Karmazyn, The length classification of threefold flops via noncommutative algebras, Adv. Math. 343 (2019) 393.
F. Cachazo, S. Katz and C. Vafa, Geometric transitions and N = 1 quiver theories, hep-th/0108120 [INSPIRE].
A. Collinucci, M. Fazzi and R. Valandro, Geometric engineering on flops of length two, JHEP 04 (2018) 090 [arXiv:1802.00813] [INSPIRE].
A. Collinucci, M. Fazzi, D. R. Morrison and R. Valandro, High electric charges in M-theory from quiver varieties, JHEP 11 (2019) 111 [arXiv:1906.02202] [INSPIRE].
S. Cecotti, C. Cordova, J. J. Heckman and C. Vafa, T-branes and monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].
J. Dixmier, Enveloping algebras, North-Holland (1977).
S. Okubo and J. Patera, General indices of representations and casimir invariants, J. Math. Phys. 25 (1984) 219.
H. Clemens, J. Kollár and S. Mori, Higher-dimensional complex geometry, Astérisque (1989).
R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
R. Gopakumar and C. Vafa, On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys. 3 (1999) 1415 [hep-th/9811131] [INSPIRE].
R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
G. Brown and M. Wemyss, Gopakumar-Vafa invariants do not determine flops, Commun. Math. Phys. 361 (2018) 143 [arXiv:1707.01150] [INSPIRE].
D. H. Collingwood and W. M. McGovern, Nilpotent orbits in semisimple Lie algebra: an introduction, Chapman and Hall/CRC (1993).
A. D. Shapere and C. Vafa, BPS structure of Argyres-Douglas superconformal theories, hep-th/9910182 [INSPIRE].
S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. 608 (2001) 477] [hep-th/9906070] [INSPIRE].
D. Xie and S.-T. Yau, 4d N = 2 SCFT and singularity theory. Part I. Classification, arXiv:1510.01324 [INSPIRE].
T. Deppisch, E6Tensors: a Mathematica package for E6 tensors, Comput. Phys. Commun. 213 (2017) 130 [arXiv:1605.05920] [INSPIRE].
S. L. Cacciatori, F. Dalla Piazza and A. Scotti, E7 groups from octonionic magic square, Adv. Theor. Math. Phys. 15 (2011) 1605 [arXiv:1007.4758] [INSPIRE].
S. L. Cacciatori, F. D. Piazza and A. Scotti, A simple E8 construction, arXiv:1207.3623 [INSPIRE].
M. De Marco and A. Sangiovanni, Higgs branches of rank-0 5d theories from M-theory on (Aj, Al) and (Ak, Dn) singularities, JHEP 03 (2022) 099 [arXiv:2111.05875] [INSPIRE].
W. Donovan and M. Wemyss, Stringy Kähler moduli, mutation and monodromy, arXiv:1907.10891 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2204.10366
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Collinucci, A., De Marco, M., Sangiovanni, A. et al. Flops of any length, Gopakumar-Vafa invariants and 5d Higgs branches. J. High Energ. Phys. 2022, 292 (2022). https://doi.org/10.1007/JHEP08(2022)292
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)292