Abstract
Feynman periods are Feynman integrals that do not depend on external kinematics. Their computation, which is necessary for many applications of quantum field theory, is greatly facilitated by graphical functions or the equivalent conformal four-point integrals. We describe a set of transformation rules that act on such functions and allow their recursive computation in arbitrary even dimensions. As a concrete example we compute all subdivergence-free Feynman periods in ϕ3 theory up to six loops and 561 of 607 Feynman periods at seven loops analytically. Our results support the conjectured existence of a coaction structure in quantum field theory and suggest that ϕ3 and ϕ4 theory share the same number content.
Article PDF
Similar content being viewed by others
References
G. 't Hooft, Dimensional regularization and the renormalization group, Nucl. Phys. B 61 (1973) 455 [INSPIRE].
T. Y. Semenova, A. V. Smirnov and V. A. Smirnov, On the status of expansion by regions, Eur. Phys. J. C 79 (2019) 136 [arXiv:1809.04325] [INSPIRE].
S. G. Gorishnii, S. A. Larin and F. V. Tkachov, The algorithm for OPE coefficient functions in the MS scheme, Phys. Lett. B 124 (1983) 217 [INSPIRE].
A. V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].
E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
F. Brown, Invariant differential forms on complexes of graphs and Feynman integrals, SIGMA 17 (2021) 103 [arXiv:2101.04419] [INSPIRE].
M. Chan, S. Galatius and S. Payne, Tropical curves, graph complexes, and top weight cohomology of ℳg, J. Amer. Math. Soc. 34 (2021) 565 [arXiv:1805.10186].
M. Borinsky and O. Schnetz, Graphical functions in even dimensions, Commun. Num. Theor. Phys. to appear (2021) [arXiv:2105.05015] [INSPIRE].
O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Num. Theor. Phys. 08 (2014) 589 [arXiv:1302.6445] [INSPIRE].
O. Schnetz, Numbers and functions in quantum field theory, Phys. Rev. D 97 (2018) 085018 [arXiv:1606.08598] [INSPIRE].
O. Schnetz, Seven loops ϕ4, in preparation (2022).
R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].
A. B. Zamolodchikov, ‘Fishnet’ diagrams as a completely integrable system, Phys. Lett. B 97 (1980) 63 [INSPIRE].
A. P. Isaev, Multiloop Feynman integrals and conformal quantum mechanics, Nucl. Phys. B 662 (2003) 461 [hep-th/0303056] [INSPIRE].
J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V. A. Smirnov, Leading singularities and off-shell conformal integrals, JHEP 08 (2013) 133 [arXiv:1303.6909] [INSPIRE].
B. Basso and L. J. Dixon, Gluing ladder Feynman diagrams into fishnets, Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].
F. Loebbert, D. Müller and H. Münkler, Yangian bootstrap for conformal Feynman integrals, Phys. Rev. D 101 (2020) 066006 [arXiv:1912.05561] [INSPIRE].
B. Basso, L. J. Dixon, D. A. Kosower, A. Krajenbrink and D.-L. Zhong, Fishnet four-point integrals: integrable representations and thermodynamic limits, JHEP 07 (2021) 168 [arXiv:2105.10514] [INSPIRE].
J. M. Drummond, J. Henn, V. A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].
N. I. Usyukina and A. I. Davydychev, Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Phys. Lett. B 305 (1993) 136 [INSPIRE].
D. J. Broadhurst and D. Kreimer, Knots and numbers in ϕ4 theory to 7 loops and beyond, Int. J. Mod. Phys. C 6 (1995) 519 [hep-ph/9504352] [INSPIRE].
F. Brown and O. Schnetz, Single-valued multiple polylogarithms and a proof of the zig-zag conjecture, J. Number Theor. 148 (2015) 478 [INSPIRE].
S. Derkachov, A. P. Isaev and L. Shumilov, Conformal triangles and zig-zag diagrams, Phys. Lett. B 830 (2022) 137150 [arXiv:2201.12232] [INSPIRE].
M. Kontsevich and D. Zagier, Periods, in Mathematics unlimited — 2001 and beyond, B. Engquist and W. Schmid eds., Springer (2001), p. 771.
F. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group, Commun. Num. Theor. Phys. 11 (2017) 453 [arXiv:1512.06409] [INSPIRE].
A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, math.AG/0103059 [INSPIRE].
E. Panzer and O. Schnetz, The Galois coaction on ϕ4 periods, Commun. Num. Theor. Phys. 11 (2017) 657 [arXiv:1603.04289] [INSPIRE].
F. Brown, Mixed Tate motives over Z, Ann. Math. 175 (2012) 949 [arXiv:1102.1312].
F. Brown, Motivic periods and the projective line minus three points, arXiv:1407.5165.
S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, The diagrammatic coaction beyond one loop, JHEP 10 (2021) 131 [arXiv:2106.01280] [INSPIRE].
S. Bloch, H. Esnault and D. Kreimer, On motives associated to graph polynomials, Commun. Math. Phys. 267 (2006) 181 [math.AG/0510011] [INSPIRE].
O. Schnetz, Quantum periods: a census of ϕ4-transcendentals, Commun. Num. Theor. Phys. 4 (2010) 1 [arXiv:0801.2856] [INSPIRE].
D. J. Broadhurst, R. Delbourgo and D. Kreimer, Unknotting the polarized vacuum of quenched QED, Phys. Lett. B 366 (1996) 421 [hep-ph/9509296] [INSPIRE].
O. Schnetz, The Galois coaction on the electron anomalous magnetic moment, Commun. Num. Theor. Phys. 12 (2018) 335 [arXiv:1711.05118] [INSPIRE].
M. Borinsky, Renormalized asymptotic enumeration of Feynman diagrams, Annals Phys. 385 (2017) 95 [arXiv:1703.00840] [INSPIRE].
K. G. Chetyrkin and F. V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
D. I. Kazakov, Calculation of Feynman integrals by the method of ‘uniqueness’, Theor. Math. Phys. 58 (1984) 223 [Teor. Mat. Fiz. 58 (1984) 343] [INSPIRE].
F. Brown, The massless higher-loop two-point function, Commun. Math. Phys. 287 (2009) 925 [arXiv:0804.1660] [INSPIRE].
F. C. S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114 [INSPIRE].
P. A. Baikov and K. G. Chetyrkin, Four loop massless propagators: an algebraic evaluation of all master integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].
R. N. Lee, A. V. Smirnov and V. A. Smirnov, Master integrals for four-loop massless propagators up to transcendentality weight twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].
E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals, Comput. Phys. Commun. 188 (2015) 148 [arXiv:1403.3385] [INSPIRE].
A. Georgoudis, V. Goncalves, E. Panzer and R. Pereira, Five-loop massless propagator integrals, arXiv:1802.00803 [INSPIRE].
A. Georgoudis, V. Gonçalves, E. Panzer, R. Pereira, A. V. Smirnov and V. A. Smirnov, Glue-and-cut at five loops, JHEP 09 (2021) 098 [arXiv:2104.08272] [INSPIRE].
K. G. Chetyrkin, A. L. Kataev and F. V. Tkachov, New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial x space technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].
M. Borinsky, J. A. Gracey, M. V. Kompaniets and O. Schnetz, Five-loop renormalization of ϕ3 theory with applications to the Lee-Yang edge singularity and percolation theory, Phys. Rev. D 103 (2021) 116024 [arXiv:2103.16224] [INSPIRE].
O. Schnetz, HyperlogProcedures, Maple package, https://www.math.fau.de/person/oliver-schnetz/ (2022).
F. Brown, On the decomposition of motivic multiple zeta values, Adv. Stud. Pure Math. 2012 (2012) 31 [arXiv:1102.1310] [INSPIRE].
E. Panzer, Hepp’s bound for Feynman graphs and matroids, arXiv:1908.09820 [INSPIRE].
M. Golz, E. Panzer and O. Schnetz, Graphical functions in parametric space, Lett. Math. Phys. 107 (2017) 1177 [arXiv:1509.07296] [INSPIRE].
O. Schnetz, Generalized single-valued hyperlogarithms, arXiv:2111.11246 [INSPIRE].
E. Speer, Ultraviolet and infrared singularity structure of generic Feynman amplitudes, Ann. Inst. H. Poincaré Phys. Theor. 23 (1975) 1.
J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 457.
M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals, Ann. Henri Poincaré D to appear (2022) [arXiv:2008.12310] [INSPIRE].
D. I. Kazakov, The method of uniqueness, a new powerful technique for multiloop calculations, Phys. Lett. B 133 (1983) 406 [INSPIRE].
A. E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks, Elec. World Eng. 34 (1899) 413.
S. Jeffries and K. Yeats, A degree preserving delta wye transformation with applications to 6-regular graphs and Feynman periods, arXiv:2110.07764 [INSPIRE].
B. D. McKay and A. Piperno, Practical graph isomorphism, II, J. Symb. Comput. 60 (2014) 94.
M. Borinsky, Feynman graph generation and calculations in the Hopf algebra of Feynman graphs, Comput. Phys. Commun. 185 (2014) 3317 [arXiv:1402.2613] [INSPIRE].
M. Borinsky, Tropical Feynman quadrature, https://github.com/michibo/tropical-feynman-quadrature.
Google, Abseil C++ library, https://abseil.io/.
T. Granlund et al., GNU multiple precision arithmetic library, https://gmplib.org/.
J. M. Boyer and W. J. Myrvold, On the cutting edge: simplified O(n) planarity by edge addition, J. Graph Algorithms Appl. 8 (2004) 241.
J. M. Boyer et al., The edge addition planarity suite, https://github.com/graph-algorithms/edge-addition-planarity-suite.
F. Brown, Generalised graph Laplacians and canonical Feynman integrals with kinematics, arXiv:2205.10094 [INSPIRE].
A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. 1. The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210 (2000) 249 [hep-th/9912092] [INSPIRE].
M. Borinsky, Graphs in perturbation theory: algebraic structure and asymptotics, Ph.D. thesis, Humboldt U., Berlin, Germany (2018) [arXiv:1807.02046] [INSPIRE].
R. Beekveldt, M. Borinsky and F. Herzog, The Hopf algebra structure of the R∗-operation, JHEP 07 (2020) 061 [arXiv:2003.04301] [INSPIRE].
M. V. Kompaniets and E. Panzer, Minimally subtracted six loop renormalization of O(n)-symmetric ϕ4 theory and critical exponents, Phys. Rev. D 96 (2017) 036016 [arXiv:1705.06483] [INSPIRE].
G. V. Dunne and M. Meynig, Instantons or renormalons? Remarks on \( {\phi}_{d=4}^4 \) theory in the MS scheme, Phys. Rev. D 105 (2022) 025019 [arXiv:2111.15554] [INSPIRE].
M. Borinsky, G. V. Dunne and M. Meynig, Semiclassical trans-series from the perturbative Hopf-algebraic Dyson-Schwinger equations: ϕ3 QFT in 6 dimensions, SIGMA 17 (2021) 087 [arXiv:2104.00593] [INSPIRE].
M. Borinsky and D. Broadhurst, Resonant resurgent asymptotics from quantum field theory, Nucl. Phys. B 981 (2022) 115861 [arXiv:2202.01513] [INSPIRE].
L. Corcoran, F. Loebbert and J. Miczajka, Yangian Ward identities for fishnet four-point integrals, JHEP 04 (2022) 131 [arXiv:2112.06928] [INSPIRE].
D. Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Annalen 286 (1990) 613.
J. L. Bourjaily, Y.-H. He, A. J. Mcleod, M. Von Hippel and M. Wilhelm, Traintracks through Calabi-Yau manifolds: scattering amplitudes beyond elliptic polylogarithms, Phys. Rev. Lett. 121 (2018) 071603 [arXiv:1805.09326] [INSPIRE].
K. Bönisch, F. Fischbach, A. Klemm, C. Nega and R. Safari, Analytic structure of all loop banana integrals, JHEP 05 (2021) 066 [arXiv:2008.10574] [INSPIRE].
F. Brown and O. Schnetz, A K3 in ϕ4, Duke Math. J. 161 (2012) 1817 [arXiv:1006.4064] [INSPIRE].
O. Schnetz, Quantum field theory over Fq, Electron. J. Comb. 18 (2011) P102 [arXiv:0909.0905] [INSPIRE].
O. Schnetz, Geometries in perturbative quantum field theory, Commun. Num. Theor. Phys. 15 (2021) 743 [arXiv:1905.08083] [INSPIRE].
E. R. Gansner and S. C. North, An open graph visualization system and its applications to software engineering, Softw. Pract. Exp. 30 (2000) 1203.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2206.10460
Supplementary Information
ESM 1
(ZIP 4095 kb)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Borinsky, M., Schnetz, O. Recursive computation of Feynman periods. J. High Energ. Phys. 2022, 291 (2022). https://doi.org/10.1007/JHEP08(2022)291
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)291