Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Schwarzschild-like topological solitons

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 August 2022
  • volume 2022, Article number: 269 (2022)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Schwarzschild-like topological solitons
Download PDF
  • Ibrahima Bah1,2,
  • Pierre Heidmann  ORCID: orcid.org/0000-0003-3423-41151 &
  • Peter Weck1 
  • 268 Accesses

  • 6 Citations

  • 87 Altmetric

  • 12 Mentions

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We construct the first class of topological solitons in gravity that are supported by internal electromagnetic flux with vanishing net charges. The solutions are obtained in a six-dimensional Einstein-Maxwell theory with a three-form flux, and admit an uplift to type IIB supergravity on T4. They are asymptotic to a torus fibration over four-dimensional Minkowski spacetime. An interesting class corresponds to solitons with a BPS particle and its anti-BPS partner held apart by a vacuum bubble. In type IIB, they correspond to bound states of BPS and anti-BPS D1-D5 extremal black holes. These metrics are a particular limit of a larger class of axially symmetric metrics that we construct and that describe smooth horizonless topological solitons. They correspond to bound states of three non-BPS bubbles on a line. An important achievement is that the outer bubbles can carry arbitrary D1-D5 charges that we can tune to vanishing net charges. We discuss their properties and compare them to a four-dimensional Schwarzschild black hole of the same mass. We show that they have a long throat with a large redshift, and that they are ultra-compact with a characteristic size of 1.52 times the Schwarzschild radius.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Lin, O. Lunin and J.M. Maldacena, Bubbling AdS space and 1/2 BPS geometries, JHEP 10 (2004) 025 [hep-th/0409174] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Bena, E.J. Martinec, S.D. Mathur and N.P. Warner, Snowmass White Paper: Micro- and Macro-Structure of Black Holes, arXiv:2203.04981 [INSPIRE].

  4. N.P. Warner, Lectures on Microstate Geometries, arXiv:1912.13108 [INSPIRE].

  5. I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. I. Bah and P. Heidmann, Topological Stars and Black Holes, Phys. Rev. Lett. 126 (2021) 151101 [arXiv:2011.08851] [INSPIRE].

  7. I. Bah and P. Heidmann, Topological stars, black holes and generalized charged Weyl solutions, JHEP 09 (2021) 147 [arXiv:2012.13407] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Bah and P. Heidmann, Smooth bubbling geometries without supersymmetry, JHEP 09 (2021) 128 [arXiv:2106.05118] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Bah and P. Heidmann, Bubble bag end: a bubbly resolution of curvature singularity, JHEP 10 (2021) 165 [arXiv:2107.13551] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Heidmann, Non-BPS floating branes and bubbling geometries, JHEP 02 (2022) 162 [arXiv:2112.03279] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Weyl, Zur gravitationstheorie, Annals Phys. (Leipzig) 54 (1917) 117.

    Article  ADS  Google Scholar 

  12. A. Papapetrou, Eine rotationssymmetrische losung in der allgemeinen relativitatstheorie, Annals Phys. 12 (1953) 309 [INSPIRE].

  13. R. Emparan and H.S. Reall, Generalized Weyl solutions, Phys. Rev. D 65 (2002) 084025 [hep-th/0110258] [INSPIRE].

  14. R. Serini, Euclideita dello spazio completamente vuto nella relativita general di Einstein, in Atti dela Academia dei Lincei Ser. 5 Rendiconti 27 (1918) 235.

  15. A. Einstein, Demonstration of the non-existence of gravitational fields with a non-vanishing total mass free of singularities, Univ. Nac. Tucumn. Revista A 2 (1941) 5.

    MathSciNet  MATH  Google Scholar 

  16. A. Einstein and W. Pauli, On the Non-Existence of Regular Stationary Solutions of Relativistic Field Equations, Annals Math. 44 (1943) 131 [INSPIRE].

  17. A. Lichnerowicz, Theories Relativiste de la Gravitation et de l’Electromagnetisme, Editions Jacques Gabay, Paris, France (1955).

    Book  Google Scholar 

  18. G.W. Gibbons and N.P. Warner, Global structure of five-dimensional fuzzballs, Class. Quant. Grav. 31 (2014) 025016 [arXiv:1305.0957] [INSPIRE].

  19. S. Stotyn and R.B. Mann, Magnetic charge can locally stabilize Kaluza-Klein bubbles, Phys. Lett. B 705 (2011) 269 [arXiv:1105.1854] [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Bah, A. Dey and P. Heidmann, Stability of topological solitons, and black string to bubble transition, JHEP 04 (2022) 168 [arXiv:2112.11474] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. E. Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].

  22. G.A. Alekseev and V.A. Belinski, Superposition of fields of two Reissner-Nordstrom sources, in 11th Marcel Grossmann Meeting on General Relativity, World Scientific, Singapore (2007), pp. 2490-2492 [DOI] [arXiv:0710.2515] [INSPIRE].

  23. G.A. Alekseev and V.A. Belinski, Equilibrium configurations of two charged masses in General Relativity, Phys. Rev. D 76 (2007) 021501 [arXiv:0706.1981] [INSPIRE].

  24. V.S. Manko, The Double-Reissner-Nordstrom solution and the interaction force between two spherically symmetric charged particles, Phys. Rev. D 76 (2007) 124032 [arXiv:0710.2158] [INSPIRE].

  25. V.S. Manko, E. Ruiz and J. Sanchez-Mondragon, Analogs of the double-Reissner-Nordstrom solution in magnetostatics and dilaton gravity: mathematical description and some physical properties, Phys. Rev. D 79 (2009) 084024 [arXiv:0811.2029] [INSPIRE].

  26. E. Ruiz, V.S. Manko and J. Martin, Extended N soliton of the Einstein-Maxwell equations, Phys. Rev. D 51 (1995) 4192 [INSPIRE].

  27. H. Elvang and G.T. Horowitz, When black holes meet Kaluza-Klein bubbles, Phys. Rev. D 67 (2003) 044015 [hep-th/0210303] [INSPIRE].

  28. O. Lunin and S.D. Mathur, Metric of the multiply wound rotating string, Nucl. Phys. B 610 (2001) 49 [hep-th/0105136] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Taylor, General 2 charge geometries, JHEP 03 (2006) 009 [hep-th/0507223] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. S.D. Mathur, The Quantum structure of black holes, Class. Quant. Grav. 23 (2006) R115 [hep-th/0510180] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. R.C. Myers and M.J. Perry, Black Holes in Higher Dimensional Space-Times, Annals Phys. 172 (1986) 304 [INSPIRE].

  32. I. Bena and D.R. Mayerson, Black Holes Lessons from Multipole Ratios, JHEP 03 (2021) 114 [arXiv:2007.09152] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. I. Bah, I. Bena, P. Heidmann, Y. Li and D.R. Mayerson, Gravitational footprints of black holes and their microstate geometries, JHEP 10 (2021) 138 [arXiv:2104.10686] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. I. Bena, S. Giusto, R. Russo, M. Shigemori and N.P. Warner, Habemus Superstratum! A constructive proof of the existence of superstrata, JHEP 05 (2015) 110 [arXiv:1503.01463] [INSPIRE].

  35. I. Bena et al., Smooth horizonless geometries deep inside the black-hole regime, Phys. Rev. Lett. 117 (2016) 201601 [arXiv:1607.03908] [INSPIRE].

  36. I. Bena, E. Martinec, D. Turton and N.P. Warner, Momentum Fractionation on Superstrata, JHEP 05 (2016) 064 [arXiv:1601.05805] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Bena et al., Asymptotically-flat supergravity solutions deep inside the black-hole regime, JHEP 02 (2018) 014 [arXiv:1711.10474] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Čeplak, R. Russo and M. Shigemori, Supercharging Superstrata, JHEP 03 (2019) 095 [arXiv:1812.08761] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. P. Heidmann and N.P. Warner, Superstratum Symbiosis, JHEP 09 (2019) 059 [arXiv:1903.07631] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. P. Heidmann, D.R. Mayerson, R. Walker and N.P. Warner, Holomorphic Waves of Black Hole Microstructure, JHEP 02 (2020) 192 [arXiv:1910.10714] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Damour, The Motion of Compact Bodies and Gravitational Radiation, Fundam. Theor. Phys. 9 (1984) 89 [INSPIRE].

    MathSciNet  Google Scholar 

  42. L. Blanchet, Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries, Living Rev. Rel. 17 (2014) 2 [arXiv:1310.1528] [INSPIRE].

    Article  Google Scholar 

  43. F.-L. Julié, On the motion of hairy black holes in Einstein-Maxwell-dilaton theories, JCAP 01 (2018) 026 [arXiv:1711.10769] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. T. Ikeda et al., Black-hole microstate spectroscopy: Ringdown, quasinormal modes, and echoes, Phys. Rev. D 104 (2021) 066021 [arXiv:2103.10960] [INSPIRE].

  45. V. Cardoso and P. Pani, Tests for the existence of black holes through gravitational wave echoes, Nature Astron. 1 (2017) 586 [arXiv:1709.01525] [INSPIRE].

    Article  ADS  Google Scholar 

  46. I. Bena, P. Heidmann, R. Monten and N.P. Warner, Thermal Decay without Information Loss in Horizonless Microstate Geometries, SciPost Phys. 7 (2019) 063 [arXiv:1905.05194] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. I. Bena, F. Eperon, P. Heidmann and N.P. Warner, The Great Escape: Tunneling out of Microstate Geometries, JHEP 04 (2021) 112 [arXiv:2005.11323] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. D.R. Mayerson, Fuzzballs and Observations, Gen. Rel. Grav. 52 (2020) 115 [arXiv:2010.09736] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA

    Ibrahima Bah, Pierre Heidmann & Peter Weck

  2. Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540, USA

    Ibrahima Bah

Authors
  1. Ibrahima Bah
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pierre Heidmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Peter Weck
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pierre Heidmann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2203.12625

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bah, I., Heidmann, P. & Weck, P. Schwarzschild-like topological solitons. J. High Energ. Phys. 2022, 269 (2022). https://doi.org/10.1007/JHEP08(2022)269

Download citation

  • Received: 12 May 2022

  • Revised: 12 July 2022

  • Accepted: 05 August 2022

  • Published: 26 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)269

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes in String Theory
  • Black Holes
  • Classical Theories of Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature