Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Spin relaxation rate for heavy quarks in weakly coupled QCD plasma
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Quantum and classical dynamics of heavy quarks in a quark-gluon plasma

06 June 2018

Jean-Paul Blaizot & Miguel Angel Escobedo

Quantum dissipation of a heavy quark from a nonlinear stochastic Schrödinger equation

04 July 2018

Yukinao Akamatsu, Masayuki Asakawa, … Alexander Rothkopf

Quantum kinetic theory for spin transport of quarks with background chromo-electromagnetic fields

24 June 2022

Di-Lun Yang

Effective quantum kinetic theory for spin transport of fermions with collsional effects

10 July 2020

Di-Lun Yang, Koichi Hattori & Yoshimasa Hidaka

Quark sivers function at small x: spin-dependent odderon and the sub-eikonal evolution

26 November 2021

Yuri V. Kovchegov & M. Gabriel Santiago

Chiral spin symmetry and the QCD phase diagram

15 December 2022

Leonid Ya. Glozman, Owe Philipsen & Robert D. Pisarski

Equilibrium Spin Distribution From Detailed Balance

09 September 2021

Ziyue Wang, Xingyu Guo & Pengfei Zhuang

Drag force to all orders in gradients

22 July 2020

Jared Reiten & Andrey V. Sadofyev

Transport coefficients of hot magnetized QCD matter beyond the lowest Landau level approximation

13 February 2019

Manu Kurian, Sukanya Mitra, … Vinod Chandra

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 August 2022

Spin relaxation rate for heavy quarks in weakly coupled QCD plasma

  • Masaru Hongo  ORCID: orcid.org/0000-0002-9458-43471,2,3,
  • Xu-Guang Huang4,5,
  • Matthias Kaminski6,
  • Mikhail Stephanov1 &
  • …
  • Ho-Ung Yee1 

Journal of High Energy Physics volume 2022, Article number: 263 (2022) Cite this article

  • 108 Accesses

  • 8 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compute the relaxation rate of the spin density of heavy quarks in a perturbative QCD plasma to leading-log order in the coupling constant g. The spin relaxation rate Γs in spin hydrodynamics is shown to be Γs ~ g4 log(1/g)T(T/M)2 in the heavy-quark limit T/M ≪ 1, which is smaller than the relaxation rate of other non- hydrodynamic modes by additional powers of T/M. We demonstrate three different methods to evaluate the spin relaxation rate: 1) the Green-Kubo formula in the spin hydrodynamic regime, 2) the spin density correlation function in the strict hydrodynamic limit, and 3) quantum kinetic theory of the spin distribution function in momentum space. We highlight the interesting differences between these methods, while they are ultimately connected to each other by the underlying Ward-Takahashi identity for the non-conserved spin density.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. STAR collaboration, Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62 [arXiv:1701.06657] [INSPIRE].

  2. STAR collaboration, Polarization of Λ (\( \overline{\Lambda} \)) hyperons along the beam direction in Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 123 (2019) 132301 [arXiv:1905.11917] [INSPIRE].

  3. ALICE collaboration, Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions, Phys. Rev. Lett. 125 (2020) 012301 [arXiv:1910.14408] [INSPIRE].

  4. STAR collaboration, Global Polarization of Ξ and Ω Hyperons in Au+Au Collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 126 (2021) 162301 [arXiv:2012.13601] [INSPIRE].

  5. J.-H. Gao and Z.-T. Liang, Relativistic Quantum Kinetic Theory for Massive Fermions and Spin Effects, Phys. Rev. D 100 (2019) 056021 [arXiv:1902.06510] [INSPIRE].

  6. N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang and D.H. Rischke, Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism, Phys. Rev. D 100 (2019) 056018 [arXiv:1902.06513] [INSPIRE].

  7. K. Hattori, Y. Hidaka and D.-L. Yang, Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass, Phys. Rev. D 100 (2019) 096011 [arXiv:1903.01653] [INSPIRE].

  8. Z. Wang, X. Guo, S. Shi and P. Zhuang, Mass Correction to Chiral Kinetic Equations, Phys. Rev. D 100 (2019) 014015 [arXiv:1903.03461] [INSPIRE].

  9. S. Li and H.-U. Yee, Quantum Kinetic Theory of Spin Polarization of Massive Quarks in Perturbative QCD: Leading Log, Phys. Rev. D 100 (2019) 056022 [arXiv:1905.10463] [INSPIRE].

  10. J.I. Kapusta, E. Rrapaj and S. Rudaz, Relaxation Time for Strange Quark Spin in Rotating Quark-Gluon Plasma, Phys. Rev. C 101 (2020) 024907 [arXiv:1907.10750] [INSPIRE].

  11. S.Y.F. Liu, Y. Sun and C.M. Ko, Spin Polarizations in a Covariant Angular-Momentum-Conserved Chiral Transport Model, Phys. Rev. Lett. 125 (2020) 062301 [arXiv:1910.06774] [INSPIRE].

  12. D.-L. Yang, K. Hattori and Y. Hidaka, Effective quantum kinetic theory for spin transport of fermions with collsional effects, JHEP 07 (2020) 070 [arXiv:2002.02612] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. Y.-C. Liu, K. Mameda and X.-G. Huang, Covariant Spin Kinetic Theory I: Collisionless Limit, Chin. Phys. C 44 (2020) 094101 [Erratum ibid. 45 (2021) 089001] [arXiv:2002.03753] [INSPIRE].

  14. N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang and D.H. Rischke, Generating Spin Polarization from Vorticity through Nonlocal Collisions, Phys. Rev. Lett. 127 (2021) 052301 [arXiv:2005.01506] [INSPIRE].

  15. N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang and D.H. Rischke, Derivation of the nonlocal collision term in the relativistic Boltzmann equation for massive spin-1/2 particles from quantum field theory, Phys. Rev. D 104 (2021) 016022 [arXiv:2103.04896] [INSPIRE].

  16. X.-L. Sheng, N. Weickgenannt, E. Speranza, D.H. Rischke and Q. Wang, From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions, Phys. Rev. D 104 (2021) 016029 [arXiv:2103.10636] [INSPIRE].

  17. S. Lin, Quantum kinetic theory for quantum electrodynamics, Phys. Rev. D 105 (2022) 076017 [arXiv:2109.00184] [INSPIRE].

  18. W. Florkowski, B. Friman, A. Jaiswal and E. Speranza, Relativistic fluid dynamics with spin, Phys. Rev. C 97 (2018) 041901 [arXiv:1705.00587] [INSPIRE].

  19. W. Florkowski, A. Kumar and R. Ryblewski, Relativistic hydrodynamics for spin-polarized fluids, Prog. Part. Nucl. Phys. 108 (2019) 103709 [arXiv:1811.04409] [INSPIRE].

  20. K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo and H. Taya, Fate of spin polarization in a relativistic fluid: An entropy-current analysis, Phys. Lett. B 795 (2019) 100 [arXiv:1901.06615] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. K. Fukushima and S. Pu, Spin hydrodynamics and symmetric energy-momentum tensors — A current induced by the spin vorticity —, Phys. Lett. B 817 (2021) 136346 [arXiv:2010.01608] [INSPIRE].

  22. S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar and R. Ryblewski, Relativistic dissipative spin dynamics in the relaxation time approximation, Phys. Lett. B 814 (2021) 136096 [arXiv:2002.03937] [INSPIRE].

  23. S. Shi, C. Gale and S. Jeon, From chiral kinetic theory to relativistic viscous spin hydrodynamics, Phys. Rev. C 103 (2021) 044906 [arXiv:2008.08618] [INSPIRE].

  24. S. Li, M.A. Stephanov and H.-U. Yee, Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics, Phys. Rev. Lett. 127 (2021) 082302 [arXiv:2011.12318] [INSPIRE].

  25. A.D. Gallegos, U. Gürsoy and A. Yarom, Hydrodynamics of spin currents, SciPost Phys. 11 (2021) 041 [arXiv:2101.04759] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. S.Y.F. Liu and Y. Yin, Spin polarization induced by the hydrodynamic gradients, JHEP 07 (2021) 188 [arXiv:2103.09200] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. She, A. Huang, D. Hou and J. Liao, Relativistic Viscous Hydrodynamics with Angular Momentum, arXiv:2105.04060 [INSPIRE].

  28. M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov and H.-U. Yee, Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation, JHEP 11 (2021) 150 [arXiv:2107.14231] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. H.-H. Peng, J.-J. Zhang, X.-L. Sheng and Q. Wang, Ideal Spin Hydrodynamics from the Wigner Function Approach, Chin. Phys. Lett. 38 (2021) 116701 [arXiv:2107.00448] [INSPIRE].

  30. F. Becattini and F. Piccinini, The Ideal relativistic spinning gas: Polarization and spectra, Annals Phys. 323 (2008) 2452 [arXiv:0710.5694] [INSPIRE].

    Article  ADS  Google Scholar 

  31. F. Becattini and L. Tinti, The Ideal relativistic rotating gas as a perfect fluid with spin, Annals Phys. 325 (2010) 1566 [arXiv:0911.0864] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. F. Becattini, L. Bucciantini, E. Grossi and L. Tinti, Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid, Eur. Phys. J. C 75 (2015) 191 [arXiv:1403.6265] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Palermo, M. Buzzegoli and F. Becattini, Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field, JHEP 10 (2021) 077 [arXiv:2106.08340] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. F. Becattini and L. Tinti, Nonequilibrium Thermodynamical Inequivalence of Quantum Stress-energy and Spin Tensors, Phys. Rev. D 87 (2013) 025029 [arXiv:1209.6212] [INSPIRE].

  35. F. Becattini, W. Florkowski and E. Speranza, Spin tensor and its role in non-equilibrium thermodynamics, Phys. Lett. B 789 (2019) 419 [arXiv:1807.10994] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Speranza and N. Weickgenannt, Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics, Eur. Phys. J. A 57 (2021) 155 [arXiv:2007.00138] [INSPIRE].

    Article  ADS  Google Scholar 

  37. E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

  38. M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge, U.K. (2000) [ISBN: 9780521654777].

  39. J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].

  40. M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev. D 98 (2018) 036006 [arXiv:1712.10305] [INSPIRE].

  41. A.V. Manohar and M.B. Wise, Heavy Quark Physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge, U.K. (2000) [DOI].

  42. Y. Hidaka, S. Pu, Q. Wang and D.-L. Yang, Foundations and Applications of Quantum Kinetic Theory, arXiv:2201.07644 [INSPIRE].

  43. L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Annals Phys. 24 (1963) 419.

    Article  ADS  MathSciNet  Google Scholar 

  44. S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory, Phys. Rev. D 52 (1995) 3591 [hep-ph/9409250] [INSPIRE].

  45. M.A. Valle Basagoiti, Transport coefficients and ladder summation in hot gauge theories, Phys. Rev. D 66 (2002) 045005 [hep-ph/0204334] [INSPIRE].

  46. A. Jimenez-Alba and H.-U. Yee, Second order transport coefficient from the chiral anomaly at weak coupling: Diagrammatic resummation, Phys. Rev. D 92 (2015) 014023 [arXiv:1504.05866] [INSPIRE].

  47. G. Aarts and J.M. Martinez Resco, Ward identity and electrical conductivity in hot QED, JHEP 11 (2002) 022 [hep-ph/0209048] [INSPIRE].

  48. Y. Hidaka and T. Kunihiro, Renormalized Linear Kinetic Theory as Derived from Quantum Field Theory: A Novel diagrammatic method for computing transport coefficients, Phys. Rev. D 83 (2011) 076004 [arXiv:1009.5154] [INSPIRE].

  49. G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].

  50. G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse Interactions and Transport in Relativistic Quark-Gluon and Electromagnetic Plasmas, Phys. Rev. Lett. 64 (1990) 1867 [INSPIRE].

  51. P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. I. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].

  52. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

  53. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

  54. E.M. Lifshitz and L.P. Pitaevskii, Physical kinetics, Butterworth Heinemann, Oxford, U.K. (1981) [ISBN: 9780750626354].

  55. G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].

  56. B. Mcinnes, Applied holography of the AdS5-Kerr space-time, Int. J. Mod. Phys. A 34 (2019) 1950138 [arXiv:1803.02528] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Garbiso and M. Kaminski, Hydrodynamics of simply spinning black holes & hydrodynamics for spinning quantum fluids, JHEP 12 (2020) 112 [arXiv:2007.04345] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. X. Chen, L. Zhang, D. Li, D. Hou and M. Huang, Gluodynamics and deconfinement phase transition under rotation from holography, JHEP 07 (2021) 132 [arXiv:2010.14478] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. C. Cartwright, M.G. Amano, M. Kaminski, J. Noronha and E. Speranza, Convergence of hydrodynamics in rapidly spinning strongly coupled plasma, arXiv:2112.10781 [INSPIRE].

  60. A.D. Gallegos and U. Gürsoy, Holographic spin liquids and Lovelock Chern-Simons gravity, JHEP 11 (2020) 151 [arXiv:2004.05148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].

  63. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

  64. S. Gongyo, Y. Kikuchi, T. Hyodo and T. Kunihiro, Effective field theory and the scattering process for magnons in ferromagnets, antiferromagnets, and ferrimagnets, PTEP 2016 (2016) 083B01 [arXiv:1602.08692] [INSPIRE].

  65. M. Hongo, T. Fujimori, T. Misumi, M. Nitta and N. Sakai, Effective field theory of magnons: Chiral magnets and the Schwinger mechanism, Phys. Rev. B 104 (2021) 134403 [arXiv:2009.06694] [INSPIRE].

  66. G. Baym and L.P. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev. 124 (1961) 287 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of Illinois, Chicago, IL, 60607, USA

    Masaru Hongo, Mikhail Stephanov & Ho-Ung Yee

  2. RIKEN iTHEMS, RIKEN, Wako, 351-0198, Japan

    Masaru Hongo

  3. Department of Physics, Niigata University, Niigata, 950-2181, Japan

    Masaru Hongo

  4. Physics Department and Center for Field Theory and Particle Physics, Fudan University, Shanghai, 200433, China

    Xu-Guang Huang

  5. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai, 200433, China

    Xu-Guang Huang

  6. Department of Physics and Astronomy, University of Alabama, 514 University Boulevard, Tuscaloosa, AL, 35487, USA

    Matthias Kaminski

Authors
  1. Masaru Hongo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Xu-Guang Huang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Matthias Kaminski
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Mikhail Stephanov
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ho-Ung Yee
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Masaru Hongo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2201.12390

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hongo, M., Huang, XG., Kaminski, M. et al. Spin relaxation rate for heavy quarks in weakly coupled QCD plasma. J. High Energ. Phys. 2022, 263 (2022). https://doi.org/10.1007/JHEP08(2022)263

Download citation

  • Received: 09 February 2022

  • Revised: 27 May 2022

  • Accepted: 12 July 2022

  • Published: 26 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)263

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quark-Gluon Plasma
  • Thermal Field Theory
  • Quantum Dissipative Systems
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.