Abstract
We compute the relaxation rate of the spin density of heavy quarks in a perturbative QCD plasma to leading-log order in the coupling constant g. The spin relaxation rate Γs in spin hydrodynamics is shown to be Γs ~ g4 log(1/g)T(T/M)2 in the heavy-quark limit T/M ≪ 1, which is smaller than the relaxation rate of other non- hydrodynamic modes by additional powers of T/M. We demonstrate three different methods to evaluate the spin relaxation rate: 1) the Green-Kubo formula in the spin hydrodynamic regime, 2) the spin density correlation function in the strict hydrodynamic limit, and 3) quantum kinetic theory of the spin distribution function in momentum space. We highlight the interesting differences between these methods, while they are ultimately connected to each other by the underlying Ward-Takahashi identity for the non-conserved spin density.
References
STAR collaboration, Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62 [arXiv:1701.06657] [INSPIRE].
STAR collaboration, Polarization of Λ (\( \overline{\Lambda} \)) hyperons along the beam direction in Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 123 (2019) 132301 [arXiv:1905.11917] [INSPIRE].
ALICE collaboration, Evidence of Spin-Orbital Angular Momentum Interactions in Relativistic Heavy-Ion Collisions, Phys. Rev. Lett. 125 (2020) 012301 [arXiv:1910.14408] [INSPIRE].
STAR collaboration, Global Polarization of Ξ and Ω Hyperons in Au+Au Collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 126 (2021) 162301 [arXiv:2012.13601] [INSPIRE].
J.-H. Gao and Z.-T. Liang, Relativistic Quantum Kinetic Theory for Massive Fermions and Spin Effects, Phys. Rev. D 100 (2019) 056021 [arXiv:1902.06510] [INSPIRE].
N. Weickgenannt, X.-L. Sheng, E. Speranza, Q. Wang and D.H. Rischke, Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism, Phys. Rev. D 100 (2019) 056018 [arXiv:1902.06513] [INSPIRE].
K. Hattori, Y. Hidaka and D.-L. Yang, Axial Kinetic Theory and Spin Transport for Fermions with Arbitrary Mass, Phys. Rev. D 100 (2019) 096011 [arXiv:1903.01653] [INSPIRE].
Z. Wang, X. Guo, S. Shi and P. Zhuang, Mass Correction to Chiral Kinetic Equations, Phys. Rev. D 100 (2019) 014015 [arXiv:1903.03461] [INSPIRE].
S. Li and H.-U. Yee, Quantum Kinetic Theory of Spin Polarization of Massive Quarks in Perturbative QCD: Leading Log, Phys. Rev. D 100 (2019) 056022 [arXiv:1905.10463] [INSPIRE].
J.I. Kapusta, E. Rrapaj and S. Rudaz, Relaxation Time for Strange Quark Spin in Rotating Quark-Gluon Plasma, Phys. Rev. C 101 (2020) 024907 [arXiv:1907.10750] [INSPIRE].
S.Y.F. Liu, Y. Sun and C.M. Ko, Spin Polarizations in a Covariant Angular-Momentum-Conserved Chiral Transport Model, Phys. Rev. Lett. 125 (2020) 062301 [arXiv:1910.06774] [INSPIRE].
D.-L. Yang, K. Hattori and Y. Hidaka, Effective quantum kinetic theory for spin transport of fermions with collsional effects, JHEP 07 (2020) 070 [arXiv:2002.02612] [INSPIRE].
Y.-C. Liu, K. Mameda and X.-G. Huang, Covariant Spin Kinetic Theory I: Collisionless Limit, Chin. Phys. C 44 (2020) 094101 [Erratum ibid. 45 (2021) 089001] [arXiv:2002.03753] [INSPIRE].
N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang and D.H. Rischke, Generating Spin Polarization from Vorticity through Nonlocal Collisions, Phys. Rev. Lett. 127 (2021) 052301 [arXiv:2005.01506] [INSPIRE].
N. Weickgenannt, E. Speranza, X.-l. Sheng, Q. Wang and D.H. Rischke, Derivation of the nonlocal collision term in the relativistic Boltzmann equation for massive spin-1/2 particles from quantum field theory, Phys. Rev. D 104 (2021) 016022 [arXiv:2103.04896] [INSPIRE].
X.-L. Sheng, N. Weickgenannt, E. Speranza, D.H. Rischke and Q. Wang, From Kadanoff-Baym to Boltzmann equations for massive spin-1/2 fermions, Phys. Rev. D 104 (2021) 016029 [arXiv:2103.10636] [INSPIRE].
S. Lin, Quantum kinetic theory for quantum electrodynamics, Phys. Rev. D 105 (2022) 076017 [arXiv:2109.00184] [INSPIRE].
W. Florkowski, B. Friman, A. Jaiswal and E. Speranza, Relativistic fluid dynamics with spin, Phys. Rev. C 97 (2018) 041901 [arXiv:1705.00587] [INSPIRE].
W. Florkowski, A. Kumar and R. Ryblewski, Relativistic hydrodynamics for spin-polarized fluids, Prog. Part. Nucl. Phys. 108 (2019) 103709 [arXiv:1811.04409] [INSPIRE].
K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo and H. Taya, Fate of spin polarization in a relativistic fluid: An entropy-current analysis, Phys. Lett. B 795 (2019) 100 [arXiv:1901.06615] [INSPIRE].
K. Fukushima and S. Pu, Spin hydrodynamics and symmetric energy-momentum tensors — A current induced by the spin vorticity —, Phys. Lett. B 817 (2021) 136346 [arXiv:2010.01608] [INSPIRE].
S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar and R. Ryblewski, Relativistic dissipative spin dynamics in the relaxation time approximation, Phys. Lett. B 814 (2021) 136096 [arXiv:2002.03937] [INSPIRE].
S. Shi, C. Gale and S. Jeon, From chiral kinetic theory to relativistic viscous spin hydrodynamics, Phys. Rev. C 103 (2021) 044906 [arXiv:2008.08618] [INSPIRE].
S. Li, M.A. Stephanov and H.-U. Yee, Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics, Phys. Rev. Lett. 127 (2021) 082302 [arXiv:2011.12318] [INSPIRE].
A.D. Gallegos, U. Gürsoy and A. Yarom, Hydrodynamics of spin currents, SciPost Phys. 11 (2021) 041 [arXiv:2101.04759] [INSPIRE].
S.Y.F. Liu and Y. Yin, Spin polarization induced by the hydrodynamic gradients, JHEP 07 (2021) 188 [arXiv:2103.09200] [INSPIRE].
D. She, A. Huang, D. Hou and J. Liao, Relativistic Viscous Hydrodynamics with Angular Momentum, arXiv:2105.04060 [INSPIRE].
M. Hongo, X.-G. Huang, M. Kaminski, M. Stephanov and H.-U. Yee, Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation, JHEP 11 (2021) 150 [arXiv:2107.14231] [INSPIRE].
H.-H. Peng, J.-J. Zhang, X.-L. Sheng and Q. Wang, Ideal Spin Hydrodynamics from the Wigner Function Approach, Chin. Phys. Lett. 38 (2021) 116701 [arXiv:2107.00448] [INSPIRE].
F. Becattini and F. Piccinini, The Ideal relativistic spinning gas: Polarization and spectra, Annals Phys. 323 (2008) 2452 [arXiv:0710.5694] [INSPIRE].
F. Becattini and L. Tinti, The Ideal relativistic rotating gas as a perfect fluid with spin, Annals Phys. 325 (2010) 1566 [arXiv:0911.0864] [INSPIRE].
F. Becattini, L. Bucciantini, E. Grossi and L. Tinti, Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid, Eur. Phys. J. C 75 (2015) 191 [arXiv:1403.6265] [INSPIRE].
A. Palermo, M. Buzzegoli and F. Becattini, Exact equilibrium distributions in statistical quantum field theory with rotation and acceleration: Dirac field, JHEP 10 (2021) 077 [arXiv:2106.08340] [INSPIRE].
F. Becattini and L. Tinti, Nonequilibrium Thermodynamical Inequivalence of Quantum Stress-energy and Spin Tensors, Phys. Rev. D 87 (2013) 025029 [arXiv:1209.6212] [INSPIRE].
F. Becattini, W. Florkowski and E. Speranza, Spin tensor and its role in non-equilibrium thermodynamics, Phys. Lett. B 789 (2019) 419 [arXiv:1807.10994] [INSPIRE].
E. Speranza and N. Weickgenannt, Spin tensor and pseudo-gauges: from nuclear collisions to gravitational physics, Eur. Phys. J. A 57 (2021) 155 [arXiv:2007.00138] [INSPIRE].
E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].
M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge, U.K. (2000) [ISBN: 9780521654777].
J.-P. Blaizot and E. Iancu, The Quark gluon plasma: Collective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].
M. Stephanov and Y. Yin, Hydrodynamics with parametric slowing down and fluctuations near the critical point, Phys. Rev. D 98 (2018) 036006 [arXiv:1712.10305] [INSPIRE].
A.V. Manohar and M.B. Wise, Heavy Quark Physics, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Cambridge University Press, Cambridge, U.K. (2000) [DOI].
Y. Hidaka, S. Pu, Q. Wang and D.-L. Yang, Foundations and Applications of Quantum Kinetic Theory, arXiv:2201.07644 [INSPIRE].
L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Annals Phys. 24 (1963) 419.
S. Jeon, Hydrodynamic transport coefficients in relativistic scalar field theory, Phys. Rev. D 52 (1995) 3591 [hep-ph/9409250] [INSPIRE].
M.A. Valle Basagoiti, Transport coefficients and ladder summation in hot gauge theories, Phys. Rev. D 66 (2002) 045005 [hep-ph/0204334] [INSPIRE].
A. Jimenez-Alba and H.-U. Yee, Second order transport coefficient from the chiral anomaly at weak coupling: Diagrammatic resummation, Phys. Rev. D 92 (2015) 014023 [arXiv:1504.05866] [INSPIRE].
G. Aarts and J.M. Martinez Resco, Ward identity and electrical conductivity in hot QED, JHEP 11 (2002) 022 [hep-ph/0209048] [INSPIRE].
Y. Hidaka and T. Kunihiro, Renormalized Linear Kinetic Theory as Derived from Quantum Field Theory: A Novel diagrammatic method for computing transport coefficients, Phys. Rev. D 83 (2011) 076004 [arXiv:1009.5154] [INSPIRE].
G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?, Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].
G. Baym, H. Monien, C.J. Pethick and D.G. Ravenhall, Transverse Interactions and Transport in Relativistic Quark-Gluon and Electromagnetic Plasmas, Phys. Rev. Lett. 64 (1990) 1867 [INSPIRE].
P.B. Arnold, G.D. Moore and L.G. Yaffe, Transport coefficients in high temperature gauge theories. I. Leading log results, JHEP 11 (2000) 001 [hep-ph/0010177] [INSPIRE].
J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].
L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].
E.M. Lifshitz and L.P. Pitaevskii, Physical kinetics, Butterworth Heinemann, Oxford, U.K. (1981) [ISBN: 9780750626354].
G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].
B. Mcinnes, Applied holography of the AdS5-Kerr space-time, Int. J. Mod. Phys. A 34 (2019) 1950138 [arXiv:1803.02528] [INSPIRE].
M. Garbiso and M. Kaminski, Hydrodynamics of simply spinning black holes & hydrodynamics for spinning quantum fluids, JHEP 12 (2020) 112 [arXiv:2007.04345] [INSPIRE].
X. Chen, L. Zhang, D. Li, D. Hou and M. Huang, Gluodynamics and deconfinement phase transition under rotation from holography, JHEP 07 (2021) 132 [arXiv:2010.14478] [INSPIRE].
C. Cartwright, M.G. Amano, M. Kaminski, J. Noronha and E. Speranza, Convergence of hydrodynamics in rapidly spinning strongly coupled plasma, arXiv:2112.10781 [INSPIRE].
A.D. Gallegos and U. Gürsoy, Holographic spin liquids and Lovelock Chern-Simons gravity, JHEP 11 (2020) 151 [arXiv:2004.05148] [INSPIRE].
C.P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L.G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].
S.S. Gubser, Drag force in AdS/CFT, Phys. Rev. D 74 (2006) 126005 [hep-th/0605182] [INSPIRE].
J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].
S. Gongyo, Y. Kikuchi, T. Hyodo and T. Kunihiro, Effective field theory and the scattering process for magnons in ferromagnets, antiferromagnets, and ferrimagnets, PTEP 2016 (2016) 083B01 [arXiv:1602.08692] [INSPIRE].
M. Hongo, T. Fujimori, T. Misumi, M. Nitta and N. Sakai, Effective field theory of magnons: Chiral magnets and the Schwinger mechanism, Phys. Rev. B 104 (2021) 134403 [arXiv:2009.06694] [INSPIRE].
G. Baym and L.P. Kadanoff, Conservation Laws and Correlation Functions, Phys. Rev. 124 (1961) 287 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2201.12390
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Hongo, M., Huang, XG., Kaminski, M. et al. Spin relaxation rate for heavy quarks in weakly coupled QCD plasma. J. High Energ. Phys. 2022, 263 (2022). https://doi.org/10.1007/JHEP08(2022)263
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)263
Keywords
- Quark-Gluon Plasma
- Thermal Field Theory
- Quantum Dissipative Systems