Abstract
In this paper we explore the possibility of explaining the muon g − 2 anomaly in various types of supersymmetric extensions of the Standard Model. In particular, we investigate and compare the phenomenological constraints in the MSSM with stable neutralino and the other types of scenarios where the neutralino is unstable. For the latter case we study the Gauge Mediated SUSY Breaking (GMSB) scenario with very light gravitino and the UDD-type R-Parity Violating (RPV) scenario. In the MSSM with stable neutralino, the parameter region favoured by the (g − 2)μ is strongly constrained by the neutralino relic abundance and the dark matter direct detection experiments, as well as by the LHC searches in the lepton plus missing transverse energy channel. On the other hand, the scenarios without stable neutralino are free from the dark matter constraints, while the LHC constraints depends strongly on the decay of the neutralino. We find that in GMSB the entire parameter region favoured by the muon g − 2 is already excluded if the Next Lightest SUSY Particle (NLSP) is the neutralino. In the GMSB scenario with a stau NSLP and in the RPV scenario, LHC constraints are weaker than the stable neutralino case and a larger region of parameter space is available to fit the (g − 2)μ anomaly.
Article PDF
Similar content being viewed by others
References
Muon g-2 collaboration, Measurement of the positive muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 89 (2002) 101804 [Erratum ibid. 89 (2002) 129903] [hep-ex/0208001] [INSPIRE].
Muon g-2 collaboration, Measurement of the negative muon anomalous magnetic moment to 0.7 ppm, Phys. Rev. Lett. 92 (2004) 161802 [hep-ex/0401008] [INSPIRE].
Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].
T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model, Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED Contribution to the Muon g-2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370] [INSPIRE].
T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the Electron, Atoms 7 (2019) 28 [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005 [arXiv:1306.5546] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon g − 2 and α(\( {m}_Z^2 \)) using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827 [arXiv:1706.09436] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(\( {M}_Z^2 \)): a new data-based analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].
M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(\( {\mathbf{m}}_{\mathbf{Z}}^{\mathbf{2}} \)), Eur. Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].
A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(\( {M}_Z^2 \)), and the hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367] [INSPIRE].
A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144 [arXiv:1403.6400] [INSPIRE].
K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
P. Masjuan and P. Sanchez-Puertas, Pseudoscalar-pole contribution to the (gμ − 2): a rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].
G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347] [INSPIRE].
M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold and S.P. Schneider, Dispersion relation for hadronic light-by-light scattering: pion pole, JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].
A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471] [INSPIRE].
J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798 (2019) 134994 [arXiv:1908.03331] [INSPIRE].
G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub and P. Stoffer, Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models, JHEP 03 (2020) 101 [arXiv:1910.13432] [INSPIRE].
T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002 [arXiv:1911.08123] [INSPIRE].
G. Colangelo, M. Hoferichter, A. Nyffeler, M. Passera and P. Stoffer, Remarks on higher-order hadronic corrections to the muon g − 2, Phys. Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].
E.-H. Chao, R.J. Hudspith, A. Gérardin, J.R. Green, H.B. Meyer and K. Ottnad, Hadronic light-by-light contribution to (g − 2)μ from lattice QCD: a complete calculation, Eur. Phys. J. C 81 (2021) 651 [arXiv:2104.02632] [INSPIRE].
S. Borsányi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].
A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic Vacuum Polarization: (g − 2)μ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801 [arXiv:2003.04886] [INSPIRE].
A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g − 2 and ∆α connection, Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].
G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943] [INSPIRE].
D. Das, C. Hati, G. Kumar and N. Mahajan, Towards a unified explanation of \( {R}_{D^{\left(\ast \right)}} \), RK and (g − 2)μ anomalies in a left-right model with leptoquarks, Phys. Rev. D 94 (2016) 055034 [arXiv:1605.06313] [INSPIRE].
D. Chakraverty, D. Choudhury and A. Datta, A Nonsupersymmetric resolution of the anomalous muon magnetic moment, Phys. Lett. B 506 (2001) 103 [hep-ph/0102180] [INSPIRE].
E. Coluccio Leskow, G. D’Ambrosio, A. Crivellin and D. Müller, (g − 2)μ, lepton flavor violation, and Z decays with leptoquarks: Correlations and future prospects, Phys. Rev. D 95 (2017) 055018 [arXiv:1612.06858] [INSPIRE].
I. Bigaran and R.R. Volkas, Getting chirality right: Single scalar leptoquark solutions to the (g − 2)e,μ puzzle, Phys. Rev. D 102 (2020) 075037 [arXiv:2002.12544] [INSPIRE].
R. Dermisek and A. Raval, Explanation of the Muon g-2 Anomaly with Vectorlike Leptons and its Implications for Higgs Decays, Phys. Rev. D 88 (2013) 013017 [arXiv:1305.3522] [INSPIRE].
E.J. Chun and T. Mondal, Explaining g − 2 anomalies in two Higgs doublet model with vector-like leptons, JHEP 11 (2020) 077 [arXiv:2009.08314] [INSPIRE].
A. Crivellin and M. Hoferichter, Consequences of chirally enhanced explanations of (g − 2)μ for h → μμ and Z → μμ, JHEP 07 (2021) 135 [arXiv:2104.03202] [INSPIRE].
M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Axionlike Particles, Lepton-Flavor Violation, and a New Explanation of aμ and ae, Phys. Rev. Lett. 124 (2020) 211803 [arXiv:1908.00008] [INSPIRE].
G. Arcadi, L. Calibbi, M. Fedele and F. Mescia, Muon g − 2 and B-anomalies from Dark Matter, Phys. Rev. Lett. 127 (2021) 061802 [arXiv:2104.03228] [INSPIRE].
H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].
H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].
H. Goldberg, Constraint on the Photino Mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419 [Erratum ibid. 103 (2009) 099905] [INSPIRE].
J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, Supersymmetric Relics from the Big Bang, Nucl. Phys. B 238 (1984) 453 [INSPIRE].
J.R. Ellis, S. Kelley and D.V. Nanopoulos, Probing the desert using gauge coupling unification, Phys. Lett. B 260 (1991) 131 [INSPIRE].
L.E. Ibáñez and G.G. Ross, SU(2) – L × U(1) Symmetry Breaking as a Radiative Effect of Supersymmetry Breaking in Guts, Phys. Lett. B 110 (1982) 215 [INSPIRE].
J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g-2)-mu in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].
U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g-2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].
T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].
S.P. Martin and J.D. Wells, Muon Anomalous Magnetic Dipole Moment in Supersymmetric Theories, Phys. Rev. D 64 (2001) 035003 [hep-ph/0103067] [INSPIRE].
L.L. Everett, G.L. Kane, S. Rigolin and L.-T. Wang, Implications of muon g-2 for supersymmetry and for discovering superpartners directly, Phys. Rev. Lett. 86 (2001) 3484 [hep-ph/0102145] [INSPIRE].
E.A. Baltz and P. Gondolo, Implications of muon anomalous magnetic moment for supersymmetric dark matter, Phys. Rev. Lett. 86 (2001) 5004 [hep-ph/0102147] [INSPIRE].
J.L. Feng and K.T. Matchev, Supersymmetry and the anomalous magnetic moment of the muon, Phys. Rev. Lett. 86 (2001) 3480 [hep-ph/0102146] [INSPIRE].
U. Chattopadhyay and P. Nath, Upper limits on sparticle masses from g-2 and the possibility for discovery of SUSY at colliders and in dark matter searches, Phys. Rev. Lett. 86 (2001) 5854 [hep-ph/0102157] [INSPIRE].
B. Dutta and Y. Mimura, Electron g − 2 with flavor violation in MSSM, Phys. Lett. B 790 (2019) 563 [arXiv:1811.10209] [INSPIRE].
M. Endo and W. Yin, Explaining electron and muon g − 2 anomaly in SUSY without lepton-flavor mixings, JHEP 08 (2019) 122 [arXiv:1906.08768] [INSPIRE].
M. Badziak and K. Sakurai, Explanation of electron and muon g-2 anomalies in the MSSM, JHEP 10 (2019) 024 [arXiv:1908.03607] [INSPIRE].
M.I. Ali, M. Chakraborti, U. Chattopadhyay and S. Mukherjee, Muon and Electron (g − 2) Anomalies with Non-Holomorphic Interactions in MSSM, arXiv:2112.09867 [INSPIRE].
P. Cox, C. Han, T.T. Yanagida and N. Yokozaki, Gaugino mediation scenarios for muon g − 2 and dark matter, JHEP 08 (2019) 097 [arXiv:1811.12699] [INSPIRE].
P. Cox, C. Han and T.T. Yanagida, Muon g − 2 and dark matter in the minimal supersymmetric standard model, Phys. Rev. D 98 (2018) 055015 [arXiv:1805.02802] [INSPIRE].
M. Abdughani, K.-I. Hikasa, L. Wu, J.M. Yang and J. Zhao, Testing electroweak SUSY for muon g − 2 and dark matter at the LHC and beyond, JHEP 11 (2019) 095 [arXiv:1909.07792] [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g − 2)μ measurements and wino/higgsino dark matter, Eur. Phys. J. C 81 (2021) 1069 [arXiv:2103.13403] [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, Improved (g − 2)μ Measurements and Supersymmetry, Eur. Phys. J. C 80 (2020) 984 [arXiv:2006.15157] [INSPIRE].
K.J. de Vries et al., The pMSSM10 after LHC Run 1, Eur. Phys. J. C 75 (2015) 422 [arXiv:1504.03260] [INSPIRE].
E. Bagnaschi et al., Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data, Eur. Phys. J. C 78 (2018) 256 [arXiv:1710.11091] [INSPIRE].
M. Chakraborti, S. Heinemeyer and I. Saha, The new “MUON G-2” result and supersymmetry, Eur. Phys. J. C 81 (2021) 1114 [arXiv:2104.03287] [INSPIRE].
M. Chakraborti, S. Heinemeyer, I. Saha and C. Schappacher, (g − 2)μ and SUSY dark matter: direct detection and collider search complementarity, Eur. Phys. J. C 82 (2022) 483 [arXiv:2112.01389] [INSPIRE].
S. Iwamoto, T.T. Yanagida and N. Yokozaki, Wino-Higgsino dark matter in MSSM from the g − 2 anomaly, Phys. Lett. B 823 (2021) 136768 [arXiv:2104.03223] [INSPIRE].
M. Van Beekveld, W. Beenakker, M. Schutten and J. De Wit, Dark matter, fine-tuning and (g − 2)μ in the pMSSM, SciPost Phys. 11 (2021) 049 [arXiv:2104.03245] [INSPIRE].
P. Cox, C. Han and T.T. Yanagida, Muon g − 2 and coannihilating dark matter in the minimal supersymmetric standard model, Phys. Rev. D 104 (2021) 075035 [arXiv:2104.03290] [INSPIRE].
S. Baum, M. Carena, N.R. Shah and C.E.M. Wagner, The tiny (g-2) muon wobble from small-μ supersymmetry, JHEP 01 (2022) 025 [arXiv:2104.03302] [INSPIRE].
P. Athron, C. Balázs, D.H.J. Jacob, W. Kotlarski, D. Stöckinger and H. Stöckinger-Kim, New physics explanations of aμ in light of the FNAL muon g − 2 measurement, JHEP 09 (2021) 080 [arXiv:2104.03691] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, Supersymmetric interpretation of the muon g – 2 anomaly, JHEP 07 (2021) 075 [arXiv:2104.03217] [INSPIRE].
M.E. Gomez, Q. Shafi, A. Tiwari and C.S. Un, Muon g − 2, neutralino dark matter and stau Nr] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g − 2 vs LHC in Supersymmetric Models, JHEP 01 (2014) 123 [arXiv:1303.4256] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and K. Yanagi, Probing minimal SUSY scenarios in the light of muon g − 2 and dark matter, JHEP 06 (2017) 031 [arXiv:1704.05287] [INSPIRE].
M. Endo, K. Hamaguchi, S. Iwamoto and T. Kitahara, Muon g − 2 vs LHC Run 2 in supersymmetric models, JHEP 04 (2020) 165 [arXiv:2001.11025] [INSPIRE].
K. Choi, A. Falkowski, H.P. Nilles, M. Olechowski and S. Pokorski, Stability of flux compactifications and the pattern of supersymmetry breaking, JHEP 11 (2004) 076 [hep-th/0411066] [INSPIRE].
K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].
M. Endo, M. Yamaguchi and K. Yoshioka, A Bottom-up approach to moduli dynamics in heavy gravitino scenario: Superpotential, soft terms and sparticle mass spectrum, Phys. Rev. D 72 (2005) 015004 [hep-ph/0504036] [INSPIRE].
K. Choi, K.S. Jeong and K.-i. Okumura, Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models, JHEP 09 (2005) 039 [hep-ph/0504037] [INSPIRE].
A. Falkowski, O. Lebedev and Y. Mambrini, SUSY phenomenology of KKLT flux compactifications, JHEP 11 (2005) 034 [hep-ph/0507110] [INSPIRE].
S.P. Martin, Non-universal gaugino masses from non-singlet F-terms in non-minimal unified models, Phys. Rev. D 79 (2009) 095019 [arXiv:0903.3568] [INSPIRE].
P. Athron et al., GM2Calc: Precise MSSM prediction for (g − 2) of the muon, Eur. Phys. J. C 76 (2016) 62 [arXiv:1510.08071] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, JHEP 02 (2021) 143 [arXiv:2010.14293] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at \( \sqrt{s} \) = 13 with the ATLAS detector, Eur. Phys. J. C 81 (2021) 600 [Erratum ibid. 81 (2021) 956] [arXiv:2101.01629] [INSPIRE].
CMS collaboration, Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum, JHEP 10 (2019) 244 [arXiv:1908.04722] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
T. Kitahara and T. Yoshinaga, Stau with Large Mass Difference and Enhancement of the Higgs to Diphoton Decay Rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].
M. Endo, K. Hamaguchi, T. Kitahara and T. Yoshinaga, Probing Bino contribution to muon g − 2, JHEP 11 (2013) 013 [arXiv:1309.3065] [INSPIRE].
S. Profumo and C.E. Yaguna, A Statistical analysis of supersymmetric dark matter in the MSSM after WMAP, Phys. Rev. D 70 (2004) 095004 [hep-ph/0407036] [INSPIRE].
K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].
J. Billard et al., Direct detection of dark matter—APPEC committee report, Rept. Prog. Phys. 85 (2022) 056201 [arXiv:2104.07634] [INSPIRE].
S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].
M. Papucci, K. Sakurai, A. Weiler and L. Zeune, Fastlim: a fast LHC limit calculator, Eur. Phys. J. C 74 (2014) 3163 [arXiv:1402.0492] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
N. Desai and P.Z. Skands, Supersymmetry and Generic BSM Models in PYTHIA 8, Eur. Phys. J. C 72 (2012) 2238 [arXiv:1109.5852] [INSPIRE].
M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: Confronting your Favourite New Physics Model with LHC Data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].
D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: From the model to the limit, Comput. Phys. Commun. 221 (2017) 383 [arXiv:1611.09856] [INSPIRE].
J.S. Kim, D. Schmeier, J. Tattersall and K. Rolbiecki, A framework to create customised LHC analyses within CheckMATE, Comput. Phys. Commun. 196 (2015) 535 [arXiv:1503.01123] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
S. Marchetti, S. Mertens, U. Nierste and D. Stöckinger, tan β-enhanced supersymmetric corrections to the anomalous magnetic moment of the muon, Phys. Rev. D 79 (2009) 013010 [arXiv:0808.1530] [INSPIRE].
M. Ibe, S. Matsumoto and R. Sato, Mass Splitting between Charged and Neutral Winos at Two-Loop Level, Phys. Lett. B 721 (2013) 252 [arXiv:1212.5989] [INSPIRE].
M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].
A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: A Program for calculating the relic density in the MSSM, Comput. Phys. Commun. 149 (2002) 103 [hep-ph/0112278] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs: Version 1.3, Comput. Phys. Commun. 174 (2006) 577 [hep-ph/0405253] [INSPIRE].
CMS collaboration, Search for supersymmetry in final states with two oppositely charged same-flavor leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 04 (2021) 123 [arXiv:2012.08600] [INSPIRE].
CMS collaboration, Search for chargino-neutralino production in final states with a Higgs boson and a W boson, Tech. Rep. CMS-PAS-SUS-20-003, CERN, Geneva, Switzerland (2021).
ATLAS collaboration, Searches for electroweak production of supersymmetric particles with compressed mass spectra in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 052005 [arXiv:1911.12606] [INSPIRE].
ATLAS collaboration, Search for long-lived charginos based on a disappearing-track signature using 136 fb−1 of pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 82 (2022) 606 [arXiv:2201.02472] [INSPIRE].
CMS collaboration, Search for disappearing tracks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 806 (2020) 135502 [arXiv:2004.05153] [INSPIRE].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
PandaX collaboration, Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 (2019) 31011 [arXiv:1806.02229] [INSPIRE].
LUX-ZEPLIN collaboration, Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D 101 (2020) 052002 [arXiv:1802.06039] [INSPIRE].
XENON collaboration, Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796] [INSPIRE].
GADMC collaboration, Future Dark Matter Searches with Low-Radioactivity Argon, in Input to the European Particle Physics Strategy Update 2018–2020, 1 November 2018 – 19 December 2018.
S.P. Martin, A Supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 18 (1998) 1 [hep-ph/9709356] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [INSPIRE].
F. Domingo, H.K. Dreiner, J.S. Kim, M.E. Krauss, M. Lozano and Z.S. Wang, Updating Bounds on R-Parity Violating Supersymmetry from Meson Oscillation Data, JHEP 02 (2019) 066 [arXiv:1810.08228] [INSPIRE].
ATLAS collaboration, Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using \( \sqrt{s} \) = 13 TeV proton–proton collision data, Eur. Phys. J. C 81 (2021) 1023 [arXiv:2106.09609] [INSPIRE].
CMS collaboration, Search for electroweak production of charginos and neutralinos in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 166 [arXiv:1709.05406] [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb−1 of \( \sqrt{s} \) = 13 TeV pp collision data with the ATLAS detector, Tech. Rep. ATLAS-CONF-2019-040, CERN, Geneva (2019).
M. Dine and A.E. Nelson, Dynamical supersymmetry breaking at low-energies, Phys. Rev. D 48 (1993) 1277 [hep-ph/9303230] [INSPIRE].
M. Dine, A.E. Nelson and Y. Shirman, Low-energy dynamical supersymmetry breaking simplified, Phys. Rev. D 51 (1995) 1362 [hep-ph/9408384] [INSPIRE].
M. Dine, A.E. Nelson, Y. Nir and Y. Shirman, New tools for low-energy dynamical supersymmetry breaking, Phys. Rev. D 53 (1996) 2658 [hep-ph/9507378] [INSPIRE].
T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].
M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].
W. Buchmüller, R.D. Peccei and T. Yanagida, Leptogenesis as the origin of matter, Ann. Rev. Nucl. Part. Sci. 55 (2005) 311 [hep-ph/0502169] [INSPIRE].
M. Viel, J. Lesgourgues, M.G. Haehnelt, S. Matarrese and A. Riotto, Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest, Phys. Rev. D 71 (2005) 063534 [astro-ph/0501562] [INSPIRE].
K. Ichikawa, M. Kawasaki, K. Nakayama, T. Sekiguchi and T. Takahashi, Constraining Light Gravitino Mass from Cosmic Microwave Background, JCAP 08 (2009) 013 [arXiv:0905.2237] [INSPIRE].
K. Osato, T. Sekiguchi, M. Shirasaki, A. Kamada and N. Yoshida, Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear, JCAP 06 (2016) 004 [arXiv:1601.07386] [INSPIRE].
J.S. Kim, S. Pokorski, K. Rolbiecki and K. Sakurai, Gravitino vs Neutralino LSP at the LHC, JHEP 09 (2019) 082 [arXiv:1905.05648] [INSPIRE].
P. Meade, N. Seiberg and D. Shih, General Gauge Mediation, Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].
M. Buican, P. Meade, N. Seiberg and D. Shih, Exploring General Gauge Mediation, JHEP 03 (2009) 016 [arXiv:0812.3668] [INSPIRE].
P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of General Gauge Mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].
S. Ambrosanio, G.L. Kane, G.D. Kribs, S.P. Martin and S. Mrenna, Search for supersymmetry with a light gravitino at the Fermilab Tevatron and CERN LEP colliders, Phys. Rev. D 54 (1996) 5395 [hep-ph/9605398] [INSPIRE].
P. Meade, M. Reece and D. Shih, Prompt Decays of General Neutralino NLSPs at the Tevatron, JHEP 05 (2010) 105 [arXiv:0911.4130] [INSPIRE].
CMS collaboration, Combined search for electroweak production of charginos and neutralinos in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 03 (2018) 160 [arXiv:1801.03957] [INSPIRE].
CMS collaboration, Search for gauge-mediated supersymmetry in events with at least one photon and missing transverse momentum in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 780 (2018) 118 [arXiv:1711.08008] [INSPIRE].
CMS collaboration, Search for new physics in events with two soft oppositely charged leptons and missing transverse momentum in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 782 (2018) 440 [arXiv:1801.01846] [INSPIRE].
ATLAS collaboration, Search for electroweak production of supersymmetric states in scenarios with compressed mass spectra at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 97 (2018) 052010 [arXiv:1712.08119] [INSPIRE].
ATLAS collaboration, Search for direct stau production in events with two hadronic τ-leptons in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 101 (2020) 032009 [arXiv:1911.06660] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2202.12928
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Chakraborti, M., Iwamoto, S., Kim, J.S. et al. Supersymmetric explanation of the muon g – 2 anomaly with and without stable neutralino. J. High Energ. Phys. 2022, 124 (2022). https://doi.org/10.1007/JHEP08(2022)124
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)124