Abstract
Multi-fractional theories with integer-order derivatives are models of gravitational and matter fields living in spacetimes with variable Hausdorff and spectral dimension, originally proposed as descriptions of geometries arising in quantum gravity. We derive the Poisson equation and the Newtonian potential of these theories starting from their covariant modified Einstein’s equations. In particular, in the case of the theory Tv with weighted derivatives with small fractional corrections, we find a gravitational potential that grows logarithmically at large radii when the fractional exponent takes the special value α = 4/3. This behaviour is associated with a restoration law for the Hausdorff dimension of spacetime independently found in the dark-energy sector of the same theory. As an application, we check whether this potential can serve as an alternative to dark matter for the galaxies NGC7814, NGC6503 and NGC3741 in the SPARC catalogue. We show that their rotation curves at medium-to-large radii can indeed be explained by purely geometric effects, although the Tully-Fisher relation is not reproduced well. We discuss how to fix the small-radius behaviour by lifting some approximations and how to test the model with other observables and an enlarged galaxy sample.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Oriti ed., Approaches to Quantum Gravity, Cambridge University Press, Cambridge, U.K. (2009).
G. F. R. Ellis, J. Murugan and A. Weltman eds., Foundations of Space and Time, Cambridge University Press, Cambridge, U.K. (2012).
L. Modesto and L. Rachwał, Nonlocal quantum gravity: A review, Int. J. Mod. Phys. D 26 (2017) 1730020 [INSPIRE].
G. Calcagni, Next step in gravity and cosmology: fundamental theory or data-driven models?, Front. Astron. Space Sci. 7 (2020) 52 [arXiv:2009.00846] [INSPIRE].
G. ’t Hooft, Dimensional reduction in quantum gravity, in proceedings of the Conference on Highlights of Particle and Condensed Matter Physics (SALAMFEST), Trieste, Italy, 8–12 March 1993, A. Ali, J.R. Ellis and S. Randjbar-Daemi eds., World Scientific, Singapore (1993) [Conf. Proc. C 930308 (1993) 284] [gr-qc/9310026] [INSPIRE].
S. Carlip, Spontaneous Dimensional Reduction in Short-Distance Quantum Gravity?, AIP Conf. Proc. 1196 (2009) 72 [arXiv:0909.3329] [INSPIRE].
G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104 (2010) 251301 [arXiv:0912.3142] [INSPIRE].
G. Calcagni, Multiscale spacetimes from first principles, Phys. Rev. D 95 (2017) 064057 [arXiv:1609.02776] [INSPIRE].
S. Carlip, Dimension and Dimensional Reduction in Quantum Gravity, Class. Quant. Grav. 34 (2017) 193001 [arXiv:1705.05417] [INSPIRE].
J. Mielczarek and T. Trześniewski, Towards the map of quantum gravity, Gen. Rel. Grav. 50 (2018) 68 [arXiv:1708.07445] [INSPIRE].
G. Calcagni, ABC of multi-fractal spacetimes and fractional sea turtles, Eur. Phys. J. C 76 (2016) 181 [Erratum ibid. 76 (2016) 459] [arXiv:1602.01470] [INSPIRE].
G. Calcagni, Multifractional theories: an unconventional review, JHEP 03 (2017) 138 [Erratum JHEP 06 (2017) 020] [arXiv:1612.05632] [INSPIRE].
G. Calcagni, Multifractional theories: an updated review, Mod. Phys. Lett. A 36 (2021) 2140006 [arXiv:2103.06557] [INSPIRE].
P. D. Mannheim, Alternatives to dark matter and dark energy, Prog. Part. Nucl. Phys. 56 (2006) 340 [astro-ph/0505266] [INSPIRE].
Q. Li and L. Modesto, Galactic Rotation Curves in Conformal Scalar-Tensor Gravity, Grav. Cosmol. 26 (2020) 99 [arXiv:1906.05185] [INSPIRE].
L. Modesto, T. Zhou and Q. Li, Geometric origin of the galaxies’ dark side, arXiv:2112.04116 [INSPIRE].
S. Capozziello and M. De Laurentis, The dark matter problem from f (R) gravity viewpoint, Annalen Phys. 524 (2012) 545 [INSPIRE].
R. H. Sanders and S. S. McGaugh, Modified Newtonian dynamics as an alternative to dark matter, Ann. Rev. Astron. Astrophys. 40 (2002) 263 [astro-ph/0204521] [INSPIRE].
J. D. Bekenstein, Relativistic gravitation theory for the MOND paradigm, Phys. Rev. D 70 (2004) 083509 [Erratum ibid. 71 (2005) 069901] [astro-ph/0403694] [INSPIRE].
B. Famaey and S. S. McGaugh, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Rel. 15 (2012) 10 [arXiv:1112.3960] [INSPIRE].
A. Giusti, MOND-like Fractional Laplacian Theory, Phys. Rev. D 101 (2020) 124029 [arXiv:2002.07133] [INSPIRE].
A. Giusti, R. Garrappa and G. Vachon, On the Kuzmin model in fractional Newtonian gravity, Eur. Phys. J. Plus 135 (2020) 798 [arXiv:2009.04335] [INSPIRE].
G. U. Varieschi, Newtonian Fractional-Dimension Gravity and MOND, Found. Phys. 50 (2020) 1608 [Erratum ibid. 51 (2021) 41] [arXiv:2003.05784] [INSPIRE].
G. U. Varieschi, Newtonian Fractional-Dimension Gravity and Disk Galaxies, Eur. Phys. J. Plus 136 (2021) 183 [arXiv:2008.04737] [INSPIRE].
G. U. Varieschi, Newtonian Fractional-Dimension Gravity and Rotationally Supported Galaxies, Mon. Not. Roy. Astron. Soc. 503 (2021) 1915 [arXiv:2011.04911] [INSPIRE].
G. U. Varieschi, Relativistic Fractional-Dimension Gravity, Universe 7 (2021) 387 [arXiv:2109.02855] [INSPIRE].
S. S. McGaugh, F. Lelli and J. M. Schombert, Radial Acceleration Relation in Rotationally Supported Galaxies, Phys. Rev. Lett. 117 (2016) 201101 [arXiv:1609.05917] [INSPIRE].
F. Lelli, S. S. McGaugh and J. M. Schombert, SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves, Astron. J. 152 (2016) 157 [arXiv:1606.09251] [INSPIRE].
G. Calcagni and A. De Felice, Dark energy in multifractional spacetimes, Phys. Rev. D 102 (2020) 103529 [arXiv:2004.02896] [INSPIRE].
G. Calcagni, Geometry and field theory in multi-fractional spacetime, JHEP 01 (2012) 065 [arXiv:1107.5041] [INSPIRE].
G. Calcagni and G. Nardelli, Momentum transforms and Laplacians in fractional spaces, Adv. Theor. Math. Phys. 16 (2012) 1315 [arXiv:1202.5383] [INSPIRE].
G. Calcagni, Quantum field theory, gravity and cosmology in a fractal universe, JHEP 03 (2010) 120 [arXiv:1001.0571] [INSPIRE].
G. Calcagni, Complex dimensions and their observability, Phys. Rev. D 96 (2017) 046001 [arXiv:1705.01619] [INSPIRE].
G. Calcagni, D. Rodríguez Fernández and M. Ronco, Black holes in multi-fractional and Lorentz-violating models, Eur. Phys. J. C 77 (2017) 335 [arXiv:1703.07811] [INSPIRE].
G. Calcagni and M. Ronco, Dimensional flow and fuzziness in quantum gravity: emergence of stochastic spacetime, Nucl. Phys. B 923 (2017) 144 [arXiv:1706.02159] [INSPIRE].
G. Calcagni, Multi-scale gravity and cosmology, JCAP 12 (2013) 041 [arXiv:1307.6382] [INSPIRE].
R. B. Tully and J. R. Fisher, A New method of determining distances to galaxies, Astron. Astrophys. 54 (1977) 661 [INSPIRE].
S. S. McGaugh, J. M. Schombert, G. D. Bothun and W. J. G. de Blok, The Baryonic Tully-Fisher relation, Astrophys. J. Lett. 533 (2000) L99 [astro-ph/0003001] [INSPIRE].
S. S. McGaugh, The Baryonic Tully-Fisher Relation of Gas Rich Galaxies as a Test of ΛLCDM and MOND, Astron. J. 143 (2012) 40 [arXiv:1107.2934] [INSPIRE].
G. Calcagni, G. Nardelli and D. Rodríguez-Fernández, Standard Model in multiscale theories and observational constraints, Phys. Rev. D 94 (2016) 045018 [arXiv:1512.06858] [INSPIRE].
G. Calcagni, Classical and quantum gravity with fractional operators, Class. Quant. Grav. 38 (2021) 165005 [Erratum ibid. 38 (2021) 169601] [arXiv:2106.15430] [INSPIRE].
K.-H. Chae, F. Lelli, H. Desmond, S. S. McGaugh, P. Li and J. M. Schombert, Testing the Strong Equivalence Principle: Detection of the External Field Effect in Rotationally Supported Galaxies, Astrophys. J. 904 (2020) 51 [Erratum ibid. 910 (2021) 81] [arXiv:2009.11525] [INSPIRE].
D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. Lett. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
S. W. Allen, A. E. Evrard and A. B. Mantz, Cosmological Parameters from Observations of Galaxy Clusters, Ann. Rev. Astron. Astrophys. 49 (2011) 409 [arXiv:1103.4829] [INSPIRE].
R. Massey, T. Kitching and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73 (2010) 086901 [arXiv:1001.1739] [INSPIRE].
DES collaboration, Dark Energy Survey Year 3 results: curved-sky weak lensing mass map reconstruction, Mon. Not. Roy. Astron. Soc. 505 (2021) 4626 [arXiv:2105.13539] [INSPIRE].
Planck collaboration, Planck 2018 results. Part VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
J. W. Moffat, Scalar-tensor-vector gravity theory, JCAP 03 (2006) 004 [gr-qc/0506021] [INSPIRE].
J. R. Brownstein and J. W. Moffat, The Bullet Cluster 1E0657-558 evidence shows Modified Gravity in the absence of Dark Matter, Mon. Not. Roy. Astron. Soc. 382 (2007) 29 [astro-ph/0702146] [INSPIRE].
J. W. Moffat and V. T. Toth, Can Modified Gravity (MOG) explain the speeding Bullet (Cluster)?, arXiv:1005.2685 [INSPIRE].
N. S. Israel and J. W. Moffat, The Train Wreck Cluster Abell 520 and the Bullet Cluster 1E0657-558 in a Generalized Theory of Gravitation, Galaxies 6 (2018) 41 [arXiv:1606.09128] [INSPIRE].
C. Lage and G. R. Farrar, The Bullet Cluster is not a Cosmological Anomaly, JCAP 02 (2015) 038 [arXiv:1406.6703] [INSPIRE].
M. Lisanti, M. Moschella, N. J. Outmezguine and O. Slone, Testing Dark Matter and Modifications to Gravity using Local Milky Way Observables, Phys. Rev. D 100 (2019) 083009 [arXiv:1812.08169] [INSPIRE].
C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, Freeman, New York, NY, U.S.A. (1973).
P. C. van der Kruit, The three-dimensional distribution of light and mass in disks of spiral galaxies, Astron. Astrophys. 192 (1988) 117.
M. A. Bershady, M. A. W. Verheijen, K. B. Westfall, D. R. Andersen, R. A. Swaters and T. Martinsson, The DiskMass Survey. Part II. Error Budget, Astrophys. J. 716 (2010) 234 [arXiv:1004.5043] [INSPIRE].
K.-H. Chae, H. Desmond, F. Lelli, S. S. McGaugh and J. M. Schombert, Testing the Strong Equivalence Principle. Part II. Relating the External Field Effect in Galaxy Rotation Curves to the Large-scale Structure of the Universe, Astrophys. J. 921 (2021) 104 [arXiv:2109.04745] [INSPIRE].
J. Binney and S. Tremaine, Galactic Dynamics, 2nd edition, Princeton University Press, Princeton, NJ, U.S.A. (2008).
H. S. Cohl and J. E. Tohline, A compact cylindrical Green’s function expansion for the solution of potential problems, Astrophys. J. 527 (1999) 86.
H. S. Cohl, A. R. P. Rau, J. E. Tohline, D. A. Browne, J. E. Cazes and E. I. Barnes, Useful alternative to the multipole expansion of 1/r potentials, Phys. Rev. A 64 (2001) 052509 [physics/0101086].
H. S. Cohl, Fourier, Gegenbauer and Jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems, SIGMA 9 (2013) 042 [arXiv:1209.6047].
I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edition, Academic Press, London, U.K. (2007).
J. D. Jackson, Classical Electrodynamics, 3rd edition, Wiley, New York, NY, U.S.A. (1998).
H. S. Cohl and E. G. Kalnins, Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry, J. Phys. A 45 (2012) 145206 [arXiv:1105.0386].
H. S. Cohl, On a generalization of the generating function for Gegenbauer polynomials, Integr. Transf. Special Func. 24 (2013) 807 [arXiv:1105.2735].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2112.13103
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Calcagni, G., Varieschi, G.U. Gravitational potential and galaxy rotation curves in multi-fractional spacetimes. J. High Energ. Phys. 2022, 24 (2022). https://doi.org/10.1007/JHEP08(2022)024
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)024