Abstract
Machine Learning algorithms have played an important role in hadronic jet classification problems. The large variety of models applied to Large Hadron Collider data has demonstrated that there is still room for improvement. In this context Quantum Machine Learning is a new and almost unexplored methodology, where the intrinsic properties of quantum computation could be used to exploit particles correlations for improving the jet classification performance. In this paper, we present a brand new approach to identify if a jet contains a hadron formed by a b or \( \overline{b} \) quark at the moment of production, based on a Variational Quantum Classifier applied to simulated data of the LHCb experiment. Quantum models are trained and evaluated using LHCb simulation. The jet identification performance is compared with a Deep Neural Network model to assess which method gives the better performance.
References
D. Guest, K. Cranmer and D. Whiteson, Deep learning and its application to LHC physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].
A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].
P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classificatioen in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].
J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H → \( b\overline{b} \) with machine learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].
ATLAS collaboration, Identification of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment, Tech. Rep. ATL-PHYS-PUB-2017-003, CERN, Geneva, Switzerland (2017).
T. Felser et al., Quantum-inspired machine learning on high-energy physics data, npj Quantum Inf. 7 (2021) 111 [arXiv:2004.13747] [INSPIRE].
J. Shlomi, P. Battaglia and J.-R. Vlimant, Graph neural networks in particle physics, Machine Learn. 2 (2021) 021001 [arXiv:2007.13681] [INSPIRE].
H. Qu and L. Gouskos, ParticleNet: jet tagging via particle clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].
E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet flavour classification using DeepJet, 2020 JINST 15 P12012 [arXiv:2008.10519] [INSPIRE].
ATLAS collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using \( t\overline{t} \) events at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 089 [arXiv:1805.01845] [INSPIRE].
ATLAS collaboration, A new tagger for the charge identification of b-jets, Tech. Rep. ATL-PHYS-PUB-2015-040, CERN, Geneva, Switzerland (2015).
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Quantum machine learning, Nature 549 (2017) 195.
K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada and J. Tanaka, Event classification with quantum machine learning in high-energy physics, Comput. Softw. Big Sci. 5 (2021) 2 [arXiv:2002.09935] [INSPIRE].
S.L. Wu et al., Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC, Phys. Rev. Res. 3 (2021) 033221 [arXiv:2104.05059] [INSPIRE].
A. Blance and M. Spannowsky, Quantum machine learning for particle physics using a variational quantum classifier, arXiv:2010.07335 [INSPIRE].
J.Y. Araz and M. Spannowsky, Classical versus quantum: comparing tensor network-based quantum circuits on LHC data, arXiv:2202.10471 [INSPIRE].
A. Blance and M. Spannowsky, Unsupervised event classification with graphs on classical and photonic quantum computers, JHEP 08 (2021) 170 [arXiv:2103.03897] [INSPIRE].
C. Tüysüz et al., Particle track reconstruction with quantum algorithms, EPJ Web Conf. 245 (2020) 09013 [arXiv:2003.08126] [INSPIRE].
L. Funcke et al., Studying quantum algorithms for particle track reconstruction in the LUXE experiment, in 20th international workshop on advanced computing and analysis techniques in physics research: AI decoded — towards sustainable, diverse, performant and effective scientific computing, (2022) [arXiv:2202.06874] [INSPIRE].
W. Guan et al., Quantum machine learning in high energy physics, Machine Learn. 2 (2021) 011003 [arXiv:2005.08582] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
ALEPH collaboration, Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].
LHCb collaboration, Study of forward Z+jet production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2014) 033 [arXiv:1310.8197] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
LHCb collaboration, Identification of beauty and charm quark jets at LHCb, 2015 JINST 10 P06013 [arXiv:1504.07670] [INSPIRE].
LHCb collaboration, First measurement of the charge asymmetry in beauty-quark pair production, Phys. Rev. Lett. 113 (2014) 082003 [arXiv:1406.4789] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
D0 collaboration, Measurement of Bd mixing using opposite-side flavor tagging, Phys. Rev. D 74 (2006) 112002 [hep-ex/0609034] [INSPIRE].
CDF collaboration, Measurements of B0 oscillations and calibration of flavor tagging in semileptonic decays, CDF note 8235, Fermilab, Batavia, IL, U.S.A. (2006).
LHCb collaboration, Opposite-side flavour tagging of B-mesons at the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022 [arXiv:1202.4979] [INSPIRE].
LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].
R.D. Field and R.P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B 136 (1978) 1 [INSPIRE].
ATLAS collaboration, Jet charge studies with the ATLAS detector using \( \sqrt{s} \) = 8 TeV proton-proton collision data, Tech. Rep. ATLAS-CONF-2013-086, CERN, Geneva, Switzerland (2013).
ATLAS collaboration, Measurement of the jet vertex charge algorithm performance for identified b-jets in \( t\overline{t} \) events in pp collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2018-022, CERN, Geneva, Switzerland (2018).
M. Benedetti, E. Lloyd, S. Sack and M. Fiorentini, Parameterized quantum circuits as machine learning models, Quant. Sci. Technol. 4 (2019) 043001.
V. Havlíček et al., Supervised learning with quantum-enhanced feature spaces, Nature 567 (2019) 209.
V. Bergholm et al., Pennylane: automatic differentiation of hybrid quantum-classical computations, arXiv:1811.04968.
J. Bradbury et al., JAX: composable transformations of Python+NumPy programs, http://github.com/google/jax (2018).
F. Chollet et al., Keras, https://keras.io (2015).
M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (2015).
L. Bottou, F.E. Curtis and J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018) 223.
D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, U.S.A., 7–9 May 2015, Y. Bengio and Y. LeCun eds., (2015) [arXiv:1412.6980] [INSPIRE].
CDF and D0 collaborations, B-tagging at CDF and D0, lessons for LHC, in 17th symposium on hadron collider physics 2006 (HCP 2006), (2006) [arXiv:0707.1712] [INSPIRE].
M. Treinish et al., Qiskit/qiskit: Qiskit 0.37.0, Zenodo (2022).
IBM quantum, https://quantum-computing.ibm.com/ (2021).
A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation and J.M. Gambetta, Validating quantum computers using randomized model circuits, Phys. Rev. A 100 (2019) 032328.
M. Schuld, Supervised quantum machine learning models are kernel methods, arXiv:2101.11020.
M.L. Wall and G. D’Aguanno, Tree-tensor-network classifiers for machine learning: from quantum inspired to quantum assisted, Phys. Rev. A 104 (2021) 042408.
S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd international conference on machine learning, Lille, France, 7–9 July 2015, F. Bach and D. Blei eds., Proc. Machine Learn. Res. 37 (2015) 448.
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Machine Learning Res. 15 (2014) 1929.
J. Bergstra, D. Yamins and D. Cox, Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures, in Proceedings of the 30th international conference on machine learning, Atlanta, GA, U.S.A., 17–19 June 2013, S. Dasgupta and D. McAllester eds., Proc. Machine Learn. Res. 28 (2013) 115.
S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2202.13943
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gianelle, A., Koppenburg, P., Lucchesi, D. et al. Quantum Machine Learning for b-jet charge identification. J. High Energ. Phys. 2022, 14 (2022). https://doi.org/10.1007/JHEP08(2022)014
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2022)014
Keywords
- Forward Physics
- Hadron-Hadron Scattering
- Jet Physics
- Flavour Physics