Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Quantum Machine Learning for b-jet charge identification
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Systematic quark/gluon identification with ratios of likelihoods

05 December 2022

Samuel Bright-Thonney, Ian Moult, … Stefan Prestel

Quark jet versus gluon jet: fully-connected neural networks with high-level features

26 June 2019

Hui Luo, Ming-Xing Luo, … GuoHuai Zhu

Identification of Additional Jets in the $${\rm{t}}{\rm\bar{t}b}{\rm\bar{b}}$$ t t ¯ b b ¯ Events by Using Deep Neural Network

19 November 2020

Jieun Choi, Tae Jeong Kim, … Soohyun Yun

Learning physics at future e−e+ colliders with machine

02 October 2020

Lingfeng Li, Ying-Ying Li, … Si-Jun Xu

Quarks and gluons in the Lund plane

18 August 2022

Frédéric A. Dreyer, Gregory Soyez & Adam Takacs

A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

30 October 2020

A. M. Sirunyan, A. Tumasyan, … CMS Collaboration

Quark Gluon Jet Discrimination with Weakly Supervised Learning

12 November 2019

Jason Sang Hun Lee, Sang Man Lee, … Seungjin Yang

Deep Learning for the classification of quenched jets

29 November 2021

L. Apolinário, N. F. Castro, … F. C. R. Peres

Potential and limitations of machine-learning approaches to inclusive |Vub| determinations

26 January 2022

Anke Biekötter, Ka Wang Kwok & Benjamin D. Pecjak

Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 01 August 2022

Quantum Machine Learning for b-jet charge identification

  • Alessio Gianelle1,
  • Patrick Koppenburg2,
  • Donatella Lucchesi1,3,
  • Davide Nicotra3,4,
  • Eduardo Rodrigues5,
  • Lorenzo Sestini1,
  • Jacco de Vries4 &
  • …
  • Davide Zuliani  ORCID: orcid.org/0000-0002-1478-45931,3,6 

Journal of High Energy Physics volume 2022, Article number: 14 (2022) Cite this article

  • 352 Accesses

  • 5 Citations

  • 39 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

Machine Learning algorithms have played an important role in hadronic jet classification problems. The large variety of models applied to Large Hadron Collider data has demonstrated that there is still room for improvement. In this context Quantum Machine Learning is a new and almost unexplored methodology, where the intrinsic properties of quantum computation could be used to exploit particles correlations for improving the jet classification performance. In this paper, we present a brand new approach to identify if a jet contains a hadron formed by a b or \( \overline{b} \) quark at the moment of production, based on a Variational Quantum Classifier applied to simulated data of the LHCb experiment. Quantum models are trained and evaluated using LHCb simulation. The jet identification performance is compared with a Deep Neural Network model to assess which method gives the better performance.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. D. Guest, K. Cranmer and D. Whiteson, Deep learning and its application to LHC physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161 [arXiv:1806.11484] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.J. Larkoski, I. Moult and B. Nachman, Jet substructure at the Large Hadron Collider: a review of recent advances in theory and machine learning, Phys. Rept. 841 (2020) 1 [arXiv:1709.04464] [INSPIRE].

    Article  ADS  Google Scholar 

  3. P. Baldi, K. Bauer, C. Eng, P. Sadowski and D. Whiteson, Jet substructure classificatioen in high-energy physics with deep neural networks, Phys. Rev. D 93 (2016) 094034 [arXiv:1603.09349] [INSPIRE].

  4. J. Lin, M. Freytsis, I. Moult and B. Nachman, Boosting H → \( b\overline{b} \) with machine learning, JHEP 10 (2018) 101 [arXiv:1807.10768] [INSPIRE].

  5. ATLAS collaboration, Identification of jets containing b-hadrons with recurrent neural networks at the ATLAS experiment, Tech. Rep. ATL-PHYS-PUB-2017-003, CERN, Geneva, Switzerland (2017).

  6. T. Felser et al., Quantum-inspired machine learning on high-energy physics data, npj Quantum Inf. 7 (2021) 111 [arXiv:2004.13747] [INSPIRE].

  7. J. Shlomi, P. Battaglia and J.-R. Vlimant, Graph neural networks in particle physics, Machine Learn. 2 (2021) 021001 [arXiv:2007.13681] [INSPIRE].

  8. H. Qu and L. Gouskos, ParticleNet: jet tagging via particle clouds, Phys. Rev. D 101 (2020) 056019 [arXiv:1902.08570] [INSPIRE].

  9. E. Bols, J. Kieseler, M. Verzetti, M. Stoye and A. Stakia, Jet flavour classification using DeepJet, 2020 JINST 15 P12012 [arXiv:2008.10519] [INSPIRE].

  10. ATLAS collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector using \( t\overline{t} \) events at \( \sqrt{s} \) = 13 TeV, JHEP 08 (2018) 089 [arXiv:1805.01845] [INSPIRE].

  11. ATLAS collaboration, A new tagger for the charge identification of b-jets, Tech. Rep. ATL-PHYS-PUB-2015-040, CERN, Geneva, Switzerland (2015).

  12. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe and S. Lloyd, Quantum machine learning, Nature 549 (2017) 195.

    Article  ADS  Google Scholar 

  13. K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada and J. Tanaka, Event classification with quantum machine learning in high-energy physics, Comput. Softw. Big Sci. 5 (2021) 2 [arXiv:2002.09935] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S.L. Wu et al., Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the LHC, Phys. Rev. Res. 3 (2021) 033221 [arXiv:2104.05059] [INSPIRE].

  15. A. Blance and M. Spannowsky, Quantum machine learning for particle physics using a variational quantum classifier, arXiv:2010.07335 [INSPIRE].

  16. J.Y. Araz and M. Spannowsky, Classical versus quantum: comparing tensor network-based quantum circuits on LHC data, arXiv:2202.10471 [INSPIRE].

  17. A. Blance and M. Spannowsky, Unsupervised event classification with graphs on classical and photonic quantum computers, JHEP 08 (2021) 170 [arXiv:2103.03897] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  18. C. Tüysüz et al., Particle track reconstruction with quantum algorithms, EPJ Web Conf. 245 (2020) 09013 [arXiv:2003.08126] [INSPIRE].

    Article  Google Scholar 

  19. L. Funcke et al., Studying quantum algorithms for particle track reconstruction in the LUXE experiment, in 20th international workshop on advanced computing and analysis techniques in physics research: AI decoded — towards sustainable, diverse, performant and effective scientific computing, (2022) [arXiv:2202.06874] [INSPIRE].

  20. W. Guan et al., Quantum machine learning in high energy physics, Machine Learn. 2 (2021) 011003 [arXiv:2005.08582] [INSPIRE].

  21. LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].

  22. LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].

  23. ALEPH collaboration, Performance of the ALEPH detector at LEP, Nucl. Instrum. Meth. A 360 (1995) 481 [INSPIRE].

  24. LHCb collaboration, Study of forward Z+jet production in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2014) 033 [arXiv:1310.8197] [INSPIRE].

  25. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  27. LHCb collaboration, Identification of beauty and charm quark jets at LHCb, 2015 JINST 10 P06013 [arXiv:1504.07670] [INSPIRE].

  28. LHCb collaboration, First measurement of the charge asymmetry in beauty-quark pair production, Phys. Rev. Lett. 113 (2014) 082003 [arXiv:1406.4789] [INSPIRE].

  29. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  30. D0 collaboration, Measurement of Bd mixing using opposite-side flavor tagging, Phys. Rev. D 74 (2006) 112002 [hep-ex/0609034] [INSPIRE].

  31. CDF collaboration, Measurements of B0 oscillations and calibration of flavor tagging in semileptonic decays, CDF note 8235, Fermilab, Batavia, IL, U.S.A. (2006).

  32. LHCb collaboration, Opposite-side flavour tagging of B-mesons at the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022 [arXiv:1202.4979] [INSPIRE].

  33. LHCb collaboration, The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].

  34. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  35. LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].

  36. D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001) 152 [INSPIRE].

  37. GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  38. D. Krohn, M.D. Schwartz, T. Lin and W.J. Waalewijn, Jet charge at the LHC, Phys. Rev. Lett. 110 (2013) 212001 [arXiv:1209.2421] [INSPIRE].

  39. R.D. Field and R.P. Feynman, A parametrization of the properties of quark jets, Nucl. Phys. B 136 (1978) 1 [INSPIRE].

  40. ATLAS collaboration, Jet charge studies with the ATLAS detector using \( \sqrt{s} \) = 8 TeV proton-proton collision data, Tech. Rep. ATLAS-CONF-2013-086, CERN, Geneva, Switzerland (2013).

  41. ATLAS collaboration, Measurement of the jet vertex charge algorithm performance for identified b-jets in \( t\overline{t} \) events in pp collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2018-022, CERN, Geneva, Switzerland (2018).

  42. M. Benedetti, E. Lloyd, S. Sack and M. Fiorentini, Parameterized quantum circuits as machine learning models, Quant. Sci. Technol. 4 (2019) 043001.

  43. V. Havlíček et al., Supervised learning with quantum-enhanced feature spaces, Nature 567 (2019) 209.

    Article  ADS  Google Scholar 

  44. V. Bergholm et al., Pennylane: automatic differentiation of hybrid quantum-classical computations, arXiv:1811.04968.

  45. J. Bradbury et al., JAX: composable transformations of Python+NumPy programs, http://github.com/google/jax (2018).

  46. F. Chollet et al., Keras, https://keras.io (2015).

  47. M. Abadi et al., TensorFlow: large-scale machine learning on heterogeneous systems, https://www.tensorflow.org/ (2015).

  48. L. Bottou, F.E. Curtis and J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018) 223.

    Article  MathSciNet  Google Scholar 

  49. D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, U.S.A., 7–9 May 2015, Y. Bengio and Y. LeCun eds., (2015) [arXiv:1412.6980] [INSPIRE].

  50. CDF and D0 collaborations, B-tagging at CDF and D0, lessons for LHC, in 17th symposium on hadron collider physics 2006 (HCP 2006), (2006) [arXiv:0707.1712] [INSPIRE].

  51. M. Treinish et al., Qiskit/qiskit: Qiskit 0.37.0, Zenodo (2022).

  52. IBM quantum, https://quantum-computing.ibm.com/ (2021).

  53. A.W. Cross, L.S. Bishop, S. Sheldon, P.D. Nation and J.M. Gambetta, Validating quantum computers using randomized model circuits, Phys. Rev. A 100 (2019) 032328.

  54. M. Schuld, Supervised quantum machine learning models are kernel methods, arXiv:2101.11020.

  55. M.L. Wall and G. D’Aguanno, Tree-tensor-network classifiers for machine learning: from quantum inspired to quantum assisted, Phys. Rev. A 104 (2021) 042408.

  56. S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proceedings of the 32nd international conference on machine learning, Lille, France, 7–9 July 2015, F. Bach and D. Blei eds., Proc. Machine Learn. Res. 37 (2015) 448.

  57. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Machine Learning Res. 15 (2014) 1929.

    MathSciNet  MATH  Google Scholar 

  58. J. Bergstra, D. Yamins and D. Cox, Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures, in Proceedings of the 30th international conference on machine learning, Atlanta, GA, U.S.A., 17–19 June 2013, S. Dasgupta and D. McAllester eds., Proc. Machine Learn. Res. 28 (2013) 115.

  59. S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 1735.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INFN Sezione di Padova, Padova, Italy

    Alessio Gianelle, Donatella Lucchesi, Lorenzo Sestini & Davide Zuliani

  2. Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

    Patrick Koppenburg

  3. Università degli Studi di Padova, Padova, Italy

    Donatella Lucchesi, Davide Nicotra & Davide Zuliani

  4. Universiteit Maastricht, Maastricht, Netherlands

    Davide Nicotra & Jacco de Vries

  5. Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

    Eduardo Rodrigues

  6. European Organization for Nuclear Research (CERN), Geneva, Switzerland

    Davide Zuliani

Authors
  1. Alessio Gianelle
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Patrick Koppenburg
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Donatella Lucchesi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Davide Nicotra
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Eduardo Rodrigues
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Lorenzo Sestini
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Jacco de Vries
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Davide Zuliani
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Davide Zuliani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.13943

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gianelle, A., Koppenburg, P., Lucchesi, D. et al. Quantum Machine Learning for b-jet charge identification. J. High Energ. Phys. 2022, 14 (2022). https://doi.org/10.1007/JHEP08(2022)014

Download citation

  • Received: 01 March 2022

  • Accepted: 20 June 2022

  • Published: 01 August 2022

  • DOI: https://doi.org/10.1007/JHEP08(2022)014

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Forward Physics
  • Hadron-Hadron Scattering
  • Jet Physics
  • Flavour Physics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.