Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Monodromy methods for torus conformal blocks and entanglement entropy at large central charge
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Entanglement and symmetry resolution in two dimensional free quantum field theories

17 August 2020

Sara Murciano, Giuseppe Di Giulio & Pasquale Calabrese

Classical conformal blocks and accessory parameters from isomonodromic deformations

17 April 2018

Máté Lencsés & Fábio Novaes

Crossing-symmetric twist field correlators and entanglement negativity in minimal CFTs

21 October 2021

Filiberto Ares, Raoul Santachiara & Jacopo Viti

Area law of connected correlation function in higher dimensional conformal field theory

15 February 2021

Jiang Long

On the entanglement entropy of Maxwell theory: a condensed matter perspective

17 December 2018

Michael Pretko

Topological pseudo entropy

02 September 2021

Tatsuma Nishioka, Tadashi Takayanagi & Yusuke Taki

Thermal correction to entanglement spectrum for conformal field theories

24 August 2022

Yin Tang, Qicheng Tang & W. Zhu

Entanglement branes, modular flow, and extended topological quantum field theory

03 October 2019

William Donnelly & Gabriel Wong

Galois conjugation and multiboundary entanglement entropy

07 December 2020

Matthew Buican & Rajath Radhakrishnan

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 August 2021

Monodromy methods for torus conformal blocks and entanglement entropy at large central charge

  • Marius Gerbershagen  ORCID: orcid.org/0000-0002-3404-15781 

Journal of High Energy Physics volume 2021, Article number: 143 (2021) Cite this article

  • 100 Accesses

  • 6 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compute the entanglement entropy in a two dimensional conformal field theory at finite size and finite temperature in the large central charge limit via the replica trick. We first generalize the known monodromy method for the calculation of conformal blocks on the plane to the torus. Then, we derive a monodromy method for the zero-point conformal blocks of the replica partition function. We explain the differences between the two monodromy methods before applying them to the calculation of the entanglement entropy. We find that the contribution of the vacuum exchange dominates the entanglement entropy for a large class of CFTs, leading to universal results in agreement with holographic predictions from the RT formula. Moreover, we determine in which regime the replica partition function agrees with a correlation function of local twist operators on the torus.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A Quantum Source of Entropy for Black Holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

  4. T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].

  5. T. Azeyanagi, T. Nishioka and T. Takayanagi, Near Extremal Black Hole Entropy as Entanglement Entropy via AdS2/CFT1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].

  6. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Cardy and C.P. Herzog, Universal Thermal Corrections to Single Interval Entanglement Entropy for Two Dimensional Conformal Field Theories, Phys. Rev. Lett. 112 (2014) 171603 [arXiv:1403.0578] [INSPIRE].

    Article  ADS  Google Scholar 

  8. B. Chen, J.-B. Wu and J.-j. Zhang, Short interval expansion of Rényi entropy on torus, JHEP 08 (2016) 130 [arXiv:1606.05444] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. S.F. Lokhande and S. Mukhi, Modular invariance and entanglement entropy, JHEP 06 (2015) 106 [arXiv:1504.01921] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. S. Mukhi, S. Murthy and J.-Q. Wu, Entanglement, Replicas, and Thetas, JHEP 01 (2018) 005 [arXiv:1706.09426] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Headrick, A. Lawrence and M. Roberts, Bose-Fermi duality and entanglement entropies, J. Stat. Mech. 1302 (2013) P02022 [arXiv:1209.2428] [INSPIRE].

  12. S. Datta and J.R. David, Rényi entropies of free bosons on the torus and holography, JHEP 04 (2014) 081 [arXiv:1311.1218] [INSPIRE].

    Article  ADS  Google Scholar 

  13. B. Chen and J.-q. Wu, Rényi entropy of a free compact boson on a torus, Phys. Rev. D 91 (2015) 105013 [arXiv:1501.00373] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. B. Chen and J.-q. Wu, Large interval limit of Rényi entropy at high temperature, Phys. Rev. D 92 (2015) 126002 [arXiv:1412.0763] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. A.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion representation of conformal block, Teor. Mat. Fiz. 73 (1987) 1088.

    Article  Google Scholar 

  16. T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  17. P.G. Zograf and L.A. Takhtadzhyan, On Uniformization Of Riemann Surfaces And The Weri-Petersson Metric On TeichmÜller And Schottky Spaces, Math. USSR Sb. 60 (1988) 297.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. B. Chen and J.-q. Wu, Universal relation between thermal entropy and entanglement entropy in conformal field theories, Phys. Rev. D 91 (2015) 086012 [arXiv:1412.0761] [INSPIRE].

  20. B. Chen and J.-q. Wu, Single interval Renyi entropy at low temperature, JHEP 08 (2014) 032 [arXiv:1405.6254] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  22. B. Chen and J.-q. Wu, Holographic calculation for large interval Rényi entropy at high temperature, Phys. Rev. D 92 (2015) 106001 [arXiv:1506.03206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. A.-K. Kashani-Poor and J. Troost, The toroidal block and the genus expansion, JHEP 03 (2013) 133 [arXiv:1212.0722] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. K.B. Alkalaev, R.V. Geiko and V.A. Rappoport, Various semiclassical limits of torus conformal blocks, JHEP 04 (2017) 070 [arXiv:1612.05891] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. K.B. Alkalaev and V.A. Belavin, Holographic duals of large-c torus conformal blocks, JHEP 10 (2017) 140 [arXiv:1707.09311] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Zamolodchikov, Two-dimensional Conformal Symmetry and Critical Four-spin Correlation Functions in the Ashkin-Teller Model, Zh. Eksp. Teor. Fiz. 90 (1986) 1808.

    MathSciNet  Google Scholar 

  27. D. Harlow, J. Maltz and E. Witten, Analytic Continuation of Liouville Theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. M. Beşken, S. Datta and P. Kraus, Semi-classical Virasoro blocks: proof of exponentiation, JHEP 01 (2020) 109 [arXiv:1910.04169] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. T. Eguchi and H. Ooguri, Conformal and Current Algebras on General Riemann Surface, Nucl. Phys. B 282 (1987) 308 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. M. Cho, S. Collier and X. Yin, Recursive Representations of Arbitrary Virasoro Conformal Blocks, JHEP 04 (2019) 018 [arXiv:1703.09805] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. Belin, C.A. Keller and I.G. Zadeh, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys. A 50 (2017) 435401 [arXiv:1704.08250] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. G.A. Baker and P.R. Graves-Morris, Padé approximants, Encyclopedia of mathematics and its applications, Addison-Wesley, Reading, Massachussetts U.S.A (1981).

  35. P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: A field theoretical approach, J. Stat. Mech. 1302 (2013) P02008 [arXiv:1210.5359] [INSPIRE].

  36. P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys. Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].

    Article  ADS  Google Scholar 

  37. P. Calabrese, J. Cardy and E. Tonni, Finite temperature entanglement negativity in conformal field theory, J. Phys. A 48 (2015) 015006 [arXiv:1408.3043] [INSPIRE].

  38. M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, J. Phys. A 52 (2019) 475302 [arXiv:1907.02084] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Murciano, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, J. Stat. Mech. 2008 (2020) 083102 [arXiv:2003.11453] [INSPIRE].

  41. L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, J. Stat. Mech. 2007 (2020) 073101 [arXiv:2003.04670] [INSPIRE].

  42. S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2 coupled to U(1) Chern-Simons theory, JHEP 07 (2021) 030 [arXiv:2012.11274] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  43. V. Balasubramanian, B.D. Chowdhury, B. Czech and J. de Boer, Entwinement and the emergence of spacetime, JHEP 01 (2015) 048 [arXiv:1406.5859] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. J. Lin, A Toy Model of Entwinement, arXiv:1608.02040 [INSPIRE].

  45. V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere and F. Galli, Entwinement in discretely gauged theories, JHEP 12 (2016) 094 [arXiv:1609.03991] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. V. Balasubramanian, B. Craps, T. De Jonckheere and G. Sárosi, Entanglement versus entwinement in symmetric product orbifolds, JHEP 01 (2019) 190 [arXiv:1806.02871] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. J. Erdmenger and M. Gerbershagen, Entwinement as a possible alternative to complexity, JHEP 03 (2020) 082 [arXiv:1910.05352] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/.

  49. L. Hadasz, Z. Jaskolski and P. Suchanek, Recursive representation of the torus 1-point conformal block, JHEP 01 (2010) 063 [arXiv:0911.2353] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany

    Marius Gerbershagen

Authors
  1. Marius Gerbershagen
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marius Gerbershagen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.11642

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gerbershagen, M. Monodromy methods for torus conformal blocks and entanglement entropy at large central charge. J. High Energ. Phys. 2021, 143 (2021). https://doi.org/10.1007/JHEP08(2021)143

Download citation

  • Received: 09 February 2021

  • Revised: 07 May 2021

  • Accepted: 05 August 2021

  • Published: 26 August 2021

  • DOI: https://doi.org/10.1007/JHEP08(2021)143

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Conformal Field Theory
  • AdS-CFT Correspondence
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.