Abstract
The Higgs doublet can mediate a long-range interaction between multi-TeV particles coupled to the Weak interactions of the Standard Model, while its emission can lead to very rapid bound-state formation processes and bound-to-bound transitions. Using the rates calculated in a companion paper, here we compute the thermal decoupling of multi-TeV WIMP dark matter coupled to the Higgs, and show that the formation of metastable dark matter bound states via Higgs-doublet emission and their decay decrease the relic density very significantly. This in turn implies that WIMP dark matter may be much heavier than previously anticipated, or conversely that for a given mass, the dark matter couplings to the Higgs may be much lower than previously predicted, thereby altering the dark matter phenomenology. While we focus on a minimal singlet-doublet model in the coannihilation regime, our calculations can be extended to larger multiplets where the effects under consideration are expected to be even more significant.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
I. Baldes and K. Petraki, Asymmetric thermal-relic dark matter: Sommerfeld-enhanced freeze-out, annihilation signals and unitarity bounds, JCAP 09 (2017) 028 [arXiv:1703.00478] [INSPIRE].
B. von Harling and K. Petraki, Bound-state formation for thermal relic dark matter and unitarity, JCAP 12 (2014) 033 [arXiv:1407.7874] [INSPIRE].
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
J.D. March-Russell and S.M. West, WIMPonium and boost factors for indirect dark matter detection, Phys. Lett. B 676 (2009) 133 [arXiv:0812.0559] [INSPIRE].
H. An, M.B. Wise and Y. Zhang, Strong CMB constraint on P-wave annihilating dark matter, Phys. Lett. B 773 (2017) 121 [arXiv:1606.02305] [INSPIRE].
M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Dark matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP 05 (2017) 036 [arXiv:1612.07295] [INSPIRE].
P. Asadi, M. Baumgart, P.J. Fitzpatrick, E. Krupczak and T.R. Slatyer, Capture and decay of electroweak WIMPonium, JCAP 02 (2017) 005 [arXiv:1610.07617] [INSPIRE].
I. Baldes, M. Cirelli, P. Panci, K. Petraki, F. Sala and M. Taoso, Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys. 4 (2018) 041 [arXiv:1712.07489] [INSPIRE].
K. Petraki, M. Postma and M. Wiechers, Dark-matter bound states from Feynman diagrams, JHEP 06 (2015) 128 [arXiv:1505.00109] [INSPIRE].
K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].
J. Harz and K. Petraki, Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter, JHEP 07 (2018) 096 [arXiv:1805.01200] [INSPIRE].
J. Harz and K. Petraki, Higgs-mediated bound states in dark-matter models, JHEP 04 (2019) 130 [arXiv:1901.10030] [INSPIRE].
R. Oncala and K. Petraki, Dark matter bound state formation via emission of a charged scalar, JHEP 02 (2020) 036 [arXiv:1911.02605] [INSPIRE].
L. Pearce and A. Kusenko, Indirect detection of self-interacting asymmetric dark matter, Phys. Rev. D 87 (2013) 123531 [arXiv:1303.7294] [INSPIRE].
I. Baldes, F. Calore, K. Petraki, V. Poireau and N.L. Rodd, Indirect searches for dark matter bound state formation and level transitions, SciPost Phys. 9 (2020) 068 [arXiv:2007.13787] [INSPIRE].
J. Harz and K. Petraki, Higgs enhancement for the dark matter relic density, Phys. Rev. D 97 (2018) 075041 [arXiv:1711.03552] [INSPIRE].
R. Mahbubani and L. Senatore, The Minimal model for dark matter and unification, Phys. Rev. D 73 (2006) 043510 [hep-ph/0510064] [INSPIRE].
F. D’Eramo, Dark matter and Higgs boson physics, Phys. Rev. D 76 (2007) 083522 [arXiv:0705.4493] [INSPIRE].
L. Calibbi, A. Mariotti and P. Tziveloglou, Singlet-doublet model: dark matter searches and LHC constraints, JHEP 10 (2015) 116 [arXiv:1505.03867] [INSPIRE].
S. Banerjee, S. Matsumoto, K. Mukaida and Y.-L.S. Tsai, WIMP Dark Matter in a Well-Tempered Regime: A case study on Singlet-Doublets Fermionic WIMP, JHEP 11 (2016) 070 [arXiv:1603.07387] [INSPIRE].
T. Cohen, J. Kearney, A. Pierce and D. Tucker-Smith, Singlet-doublet dark matter, Phys. Rev. D 85 (2012) 075003 [arXiv:1109.2604] [INSPIRE].
C. Cheung and D. Sanford, Simplified models of mixed dark matter, JCAP 02 (2014) 011 [arXiv:1311.5896] [INSPIRE].
K. Fraser, A. Parikh and W.L. Xu, A closer look at CP-violating Higgs portal dark matter as a candidate for the GCE, JHEP 03 (2021) 123 [arXiv:2010.15129] [INSPIRE].
A. Freitas, S. Westhoff and J. Zupan, Integrating in the Higgs portal to fermion dark matter, JHEP 09 (2015) 015 [arXiv:1506.04149] [INSPIRE].
L. Lopez Honorez, M.H.G. Tytgat, P. Tziveloglou and B. Zaldivar, On minimal dark matter coupled to the Higgs, JHEP 04 (2018) 011 [arXiv:1711.08619] [INSPIRE].
J.-W. Wang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Impact of fermionic electroweak multiplet dark matter on vacuum stability with one-loop matching, Phys. Rev. D 99 (2019) 055009 [arXiv:1811.08743] [INSPIRE].
T. Abe and R. Sato, Current status and future prospects of the singlet-doublet dark matter model with CP-violation, Phys. Rev. D 99 (2019) 035012 [arXiv:1901.02278] [INSPIRE].
A. Dedes and D. Karamitros, Doublet-triplet fermionic dark matter, Phys. Rev. D 89 (2014) 115002 [arXiv:1403.7744] [INSPIRE].
C.E. Yaguna, Singlet-doublet Dirac dark matter, Phys. Rev. D 92 (2015) 115002 [arXiv:1510.06151] [INSPIRE].
T.M.P. Tait and Z.-H. Yu, Triplet-quadruplet dark matter, JHEP 03 (2016) 204 [arXiv:1601.01354] [INSPIRE].
M. Beneke, A. Bharucha, A. Hryczuk, S. Recksiegel and P. Ruiz-Femenia, The last refuge of mixed wino-Higgsino dark matter, JHEP 01 (2017) 002 [arXiv:1611.00804] [INSPIRE].
A. Bharucha, F. Brümmer and N. Desai, Next-to-minimal dark matter at the LHC, JHEP 11 (2018) 195 [arXiv:1804.02357] [INSPIRE].
A. Filimonova and S. Westhoff, Long live the Higgs portal!, JHEP 02 (2019) 140 [arXiv:1812.04628] [INSPIRE].
A. Betancur and O. Zapata, Phenomenology of doublet-triplet fermionic dark matter in nonstandard cosmology and multicomponent dark sectors, Phys. Rev. D 98 (2018) 095003 [arXiv:1809.04990] [INSPIRE].
R. Oncala and K. Petraki, Bound states of WIMP dark matter in Higgs-portal models. Part I. Cross-sections and transition rates, JHEP 06 (2021) 124 [arXiv:2101.08666] [INSPIRE].
M.E. Carrington, The Effective potential at finite temperature in the Standard Model, Phys. Rev. D 45 (1992) 2933 [INSPIRE].
A. Ahriche, What is the criterion for a strong first order electroweak phase transition in singlet models?, Phys. Rev. D 75 (2007) 083522 [hep-ph/0701192] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
J. Ellis, F. Luo and K.A. Olive, Gluino coannihilation revisited, JHEP 09 (2015) 127 [arXiv:1503.07142] [INSPIRE].
P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].
T. Binder, K. Mukaida and K. Petraki, Rapid bound-state formation of dark matter in the early universe, Phys. Rev. Lett. 124 (2020) 161102 [arXiv:1910.11288] [INSPIRE].
T. Binder, B. Blobel, J. Harz and K. Mukaida, Dark matter bound-state formation at higher order: a non-equilibrium quantum field theory approach, JHEP 09 (2020) 086 [arXiv:2002.07145] [INSPIRE].
T. Binder, L. Covi and K. Mukaida, Dark matter Sommerfeld-enhanced annihilation and Bound-state decay at finite temperature, Phys. Rev. D 98 (2018) 115023 [arXiv:1808.06472] [INSPIRE].
S. Kim and M. Laine, Rapid thermal co-annihilation through bound states in QCD, JHEP 07 (2016) 143 [arXiv:1602.08105] [INSPIRE].
S. Biondini and M. Laine, Re-derived overclosure bound for the inert doublet model, JHEP 08 (2017) 047 [arXiv:1706.01894] [INSPIRE].
S. Biondini and M. Laine, Thermal dark matter co-annihilating with a strongly interacting scalar, JHEP 04 (2018) 072 [arXiv:1801.05821] [INSPIRE].
S. Biondini and S. Vogl, Coloured coannihilations: dark matter phenomenology meets non-relativistic EFTs, JHEP 02 (2019) 016 [arXiv:1811.02581] [INSPIRE].
S. Biondini and S. Vogl, Scalar dark matter coannihilating with a coloured fermion, JHEP 11 (2019) 147 [arXiv:1907.05766] [INSPIRE].
R. Oncala and K. Petraki, Dark matter bound states via emission of scalar mediators, JHEP 01 (2019) 070 [arXiv:1808.04854] [INSPIRE].
K. Blum, R. Sato and T.R. Slatyer, Self-consistent calculation of the Sommerfeld enhancement, JCAP 06 (2016) 021 [arXiv:1603.01383] [INSPIRE].
K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].
P. Ko, T. Matsui and Y.-L. Tang, Dark matter bound state formation in fermionic Z2 DM model with light dark photon and dark Higgs boson, JHEP 10 (2020) 082 [arXiv:1910.04311] [INSPIRE].
M. Cirelli, Y. Gouttenoire, K. Petraki and F. Sala, Homeopathic dark matter, or how diluted heavy substances produce high energy cosmic rays, JCAP 02 (2019) 014 [arXiv:1811.03608] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2101.08667
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Oncala, R., Petraki, K. Bound states of WIMP dark matter in Higgs-portal models. Part II. Thermal decoupling. J. High Energ. Phys. 2021, 69 (2021). https://doi.org/10.1007/JHEP08(2021)069
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2021)069