S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys. 88 (2016) 015002 [arXiv:1409.1231] [INSPIRE].
ADS
Google Scholar
S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, arXiv:1905.08255 [INSPIRE].
A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Google Scholar
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].
ADS
MATH
Google Scholar
N. Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].
ADS
Google Scholar
G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].
A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
F.F. Gautason, L. Schneiderbauer, W. Sybesma and L. Thorlacius, Page Curve for an Evaporating Black Hole, JHEP 05 (2020) 091 [arXiv:2004.00598] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T. Hartman, E. Shaghoulian and A. Strominger, Islands in Asymptotically Flat 2D Gravity, JHEP 07 (2020) 022 [arXiv:2004.13857] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
G. ’t Hooft, The scattering matrix approach for the quantum black hole: An overview, Int. J. Mod. Phys. A 11 (1996) 4623 [gr-qc/9607022] [INSPIRE].
S.B. Giddings and R.A. Porto, The Gravitational S-matrix, Phys. Rev. D 81 (2010) 025002 [arXiv:0908.0004] [INSPIRE].
ADS
Google Scholar
F. Bezrukov, D. Levkov and S. Sibiryakov, Semiclassical S-matrix for black holes, JHEP 12 (2015) 002 [arXiv:1503.07181] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
V.A. Berezin, A. Boyarsky and A. Neronov, On the Mechanism of Hawking radiation, Grav. Cosmol. 5 (1999) 16 [gr-qc/0605099] [INSPIRE].
M.K. Parikh and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85 (2000) 5042 [hep-th/9907001] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
F.L. Bezrukov and D. Levkov, Dynamical tunneling of bound systems through a potential barrier: complex way to the top, J. Exp. Theor. Phys. 98 (2004) 820 [quant-ph/0312144] [INSPIRE].
D.G. Levkov, A.G. Panin and S.M. Sibiryakov, Unstable Semiclassical Trajectories in Tunneling, Phys. Rev. Lett. 99 (2007) 170407 [arXiv:0707.0433] [INSPIRE].
ADS
MATH
Google Scholar
C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes, Phys. Rev. D 45 (1992) 1005 [hep-th/9111056] [INSPIRE].
ADS
MathSciNet
Google Scholar
A. Strominger, Les Houches lectures on black holes, hep-th/9501071 [INSPIRE].
J.G. Russo, L. Susskind and L. Thorlacius, The endpoint of Hawking radiation, Phys. Rev. D 46 (1992) 3444 [hep-th/9206070] [INSPIRE].
ADS
MathSciNet
Google Scholar
T.D. Chung and H.L. Verlinde, Dynamical moving mirrors and black holes, Nucl. Phys. B 418 (1994) 305 [hep-th/9311007] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
A. Strominger and L. Thorlacius, Conformally invariant boundary conditions for dilaton gravity, Phys. Rev. D 50 (1994) 5177 [hep-th/9405084] [INSPIRE].
ADS
MathSciNet
Google Scholar
S.R. Das and S. Mukherji, Boundary dynamics in dilaton gravity, Mod. Phys. Lett. A 9 (1994) 3105 [hep-th/9407015] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Fitkevich, D. Levkov and Y. Zenkevich, Exact solutions and critical chaos in dilaton gravity with a boundary, JHEP 04 (2017) 108 [arXiv:1702.02576] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
C. Teitelboim, Gravitation and Hamiltonian Structure in Two Space-Time Dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Jackiw, Lower Dimensional Gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
ADS
Google Scholar
D. Cangemi and R. Jackiw, Gauge invariant formulations of lineal gravity, Phys. Rev. Lett. 69 (1992) 233 [hep-th/9203056] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. Fitkevich, D. Levkov and Y. Zenkevich, Dilaton gravity with a boundary: from unitarity to black hole evaporation, JHEP 06 (2020) 184 [arXiv:2004.13745] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].
ADS
MathSciNet
Google Scholar
R.C. Myers, Black hole entropy in two-dimensions, Phys. Rev. D 50 (1994) 6412 [hep-th/9405162] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.D. Hayward, Entropy in the RST model, Phys. Rev. D 52 (1995) 2239 [gr-qc/9412065] [INSPIRE].
S.N. Solodukhin, Two-dimensional quantum corrected eternal black hole, Phys. Rev. D 53 (1996) 824 [hep-th/9506206] [INSPIRE].
ADS
MathSciNet
Google Scholar
G.W. Gibbons and S.W. Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].
ADS
Google Scholar
A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S.P. de Alwis, Quantization of a theory of 2-D dilaton gravity, Phys. Lett. B 289 (1992) 278 [hep-th/9205069] [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Louis-Martinez and G. Kunstatter, On Birckhoff ’s theorem in 2-D dilaton gravity, Phys. Rev. D 49 (1994) 5227 [INSPIRE].
ADS
MathSciNet
Google Scholar
V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, Dynamics of Bubbles in General Relativity, Phys. Rev. D 36 (1987) 2919 [INSPIRE].
ADS
MathSciNet
Google Scholar
D. Levkov, A. Panin and S. Sibiryakov, Complex trajectories in chaotic dynamical tunneling, Phys. Rev.E 76 (2007) 046209 [nlin/0701063].
D.G. Levkov, A.G. Panin and S.M. Sibiryakov, Signatures of unstable semiclassical trajectories in tunneling, J. Phys. A 42 (2009) 205102 [arXiv:0811.3391] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M.K. Parikh, A secret tunnel through the horizon, Gen. Rel. Grav. 36 (2004) 2419 [hep-th/0405160] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
T. Banks, A. Dabholkar, M.R. Douglas and M. O’Loughlin, Are horned particles the climax of Hawking evaporation?, Phys. Rev. D 45 (1992) 3607 [hep-th/9201061] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.G. Russo, L. Susskind and L. Thorlacius, Black hole evaporation in (1+1)-dimensions, Phys. Lett. B 292 (1992) 13 [hep-th/9201074] [INSPIRE].
ADS
Google Scholar
L. Thorlacius, Black hole evolution, Nucl. Phys. B Proc. Suppl. 41 (1995) 245 [hep-th/9411020] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
R. Landauer and T. Martin, Barrier interaction time in tunneling, Rev. Mod. Phys. 66 (1994) 217 [INSPIRE].
ADS
Google Scholar