Predictive power of grand unification from quantum gravity

Abstract

If a grand-unified extension of the asymptotically safe Reuter fixed-point for quantum gravity exists, it determines free parameters of the grand-unified scalar potential. All quartic couplings take their fixed-point values in the trans-Planckian regime. They are irrelevant parameters that are, in principle, computable for a given particle content of the grand unified model. In turn, the direction of spontaneous breaking of the grand-unified gauge symmetry becomes predictable. For the flow of the couplings below the Planck mass, gauge and Yukawa interactions compete for the determination of the minimum of the effective potential.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H. Georgi and S.L. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

  2. [2]

    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].

  3. [3]

    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

  4. [4]

    A.J. Buras, J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, Aspects of the grand unification of strong, weak and electromagnetic interactions, Nucl. Phys. B 135 (1978) 66.

  5. [5]

    H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].

  6. [6]

    H. Georgi and D.V. Nanopoulos, Masses and mixing in unified theories, Nucl. Phys. B 159 (1979) 16 [INSPIRE].

  7. [7]

    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

  8. [8]

    J.M. Gipson and R.E. Marshak, Intermediate mass scales in the new SO(10) grand unification in the one loop approximation, Phys. Rev. D 31 (1985) 1705 [INSPIRE].

  9. [9]

    D. Chang, R.N. Mohapatra, J. Gipson, R.E. Marshak and M.K. Parida, Experimental tests of new SO(10) grand unification, Phys. Rev. D 31 (1985) 1718 [INSPIRE].

  10. [10]

    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev. D 46 (1993) 2261 [INSPIRE].

  11. [11]

    N.G. Deshpande, E. Keith and P.B. Pal, Implications of LEP results for SO(10) grand unification with two intermediate stages, Phys. Rev. D 47 (1993) 2892 [hep-ph/9211232] [INSPIRE].

  12. [12]

    S. Bertolini, L. Di Luzio and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: a reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049] [INSPIRE].

  13. [13]

    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General relativity: an Einstein centenary survey, W. Israel and S. Hwking eds., Cambridge University Press, Cambridge U.K. (1980).

  14. [14]

    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

  15. [15]

    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].

  16. [16]

    U. Ellwanger, Flow equations for N point functions and bound states, hep-ph/9308260 [INSPIRE].

  17. [17]

    T.R. Morris, The exact renormalization group and approximate solutions, Int. J. Mod. Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

  18. [18]

    M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 417 (1994) 181 [INSPIRE].

  19. [19]

    N. Tetradis and C. Wetterich, Critical exponents from effective average action, Nucl. Phys. B 422 (1994) 541 [hep-ph/9308214] [INSPIRE].

  20. [20]

    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

  21. [21]

    O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

  22. [22]

    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301 [hep-th/0312114] [INSPIRE].

  23. [23]

    A. Codello, R. Percacci and C. Rahmede, Investigating the ultraviolet properties of gravity with a Wilsonian renormalization group equation, Annals Phys. 324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

  24. [24]

    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

  25. [25]

    E. Manrique, M. Reuter and F. Saueressig, Bimetric renormalization group flows in quantum Einstein gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

  26. [26]

    E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically safe Lorentzian gravity, Phys. Rev. Lett. 106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

  27. [27]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].

  28. [28]

    N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global flows in quantum gravity, Phys. Rev. D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

  29. [29]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev. D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

  30. [30]

    D. Becker and M. Reuter, En route to background independence: broken split-symmetry, and how to restore it with bi-metric average actions, Annals Phys. 350 (2014) 225 [arXiv:1404.4537] [INSPIRE].

  31. [31]

    H. Gies, B. Knorr and S. Lippoldt, Generalized parametrization dependence in quantum gravity, Phys. Rev. D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].

  32. [32]

    N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local quantum gravity, Phys. Rev. D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

  33. [33]

    M. Demmel, F. Saueressig and O. Zanusso, A proper fixed functional for four-dimensional quantum Einstein gravity, JHEP 08 (2015) 113 [arXiv:1504.07656] [INSPIRE].

  34. [34]

    N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f(R) gravity and some of its exact solutions, Phys. Rev. D 92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].

  35. [35]

    H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational two-loop counterterm is asymptotically safe, Phys. Rev. Lett. 116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

  36. [36]

    J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: asymptotically safe and sound, Phys. Rev. D 95 (2017) 086013 [arXiv:1609.04813] [INSPIRE].

  37. [37]

    T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J. C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].

  38. [38]

    N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev. D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].

  39. [39]

    K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev. D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].

  40. [40]

    S. Gonzalez-Martin, T.R. Morris and Z.H. Slade, Asymptotic solutions in asymptotic safety, Phys. Rev. D 95 (2017) 106010 [arXiv:1704.08873] [INSPIRE].

  41. [41]

    K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev. D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].

  42. [42]

    G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and field parametrization dependence in the f(R) truncation, Phys. Rev. D 98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].

  43. [43]

    B. Knorr, C. Ripken and F. Saueressig, Form factors in asymptotic safety: conceptual ideas and computational toolbox, Class. Quant. Grav. 36 (2019) 234001 [arXiv:1907.02903] [INSPIRE].

  44. [44]

    L. Bosma, B. Knorr and F. Saueressig, Resolving spacetime singularities within asymptotic safety, Phys. Rev. Lett. 123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].

  45. [45]

    G. Narain and R. Percacci, Renormalization group flow in scalar-tensor theories. I, Class. Quant. Grav. 27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].

  46. [46]

    J.-E. Daum, U. Harst and M. Reuter, Running Gauge coupling in asymptotically safe quantum gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

  47. [47]

    U. Harst and M. Reuter, QED coupled to QEG, JHEP 05 (2011) 119 [arXiv:1101.6007] [INSPIRE].

  48. [48]

    P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

  49. [49]

    P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev. D 93 (2016) 044049 [Erratum ibid. 93 (2016) 129904] [arXiv:1512.01589] [INSPIRE].

  50. [50]

    K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav. 33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].

  51. [51]

    R. Percacci and G.P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J. C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].

  52. [52]

    J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

  53. [53]

    P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett. B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].

  54. [54]

    A. Eichhorn and S. Lippoldt, Quantum gravity and Standard-Model-like fermions, Phys. Lett. B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].

  55. [55]

    J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems, JHEP 05 (2017) 093 [arXiv:1702.06539] [INSPIRE].

  56. [56]

    Y. Hamada and M. Yamada, Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system, JHEP 08 (2017) 070 [arXiv:1703.09033] [INSPIRE].

  57. [57]

    N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev. D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].

  58. [58]

    A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is quantum gravity?, Phys. Lett. B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

  59. [59]

    A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity, Phys. Rev. D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

  60. [60]

    N. Alkofer and F. Saueressig, Asymptotically safe f(R)-gravity coupled to matter I: the polynomial case, Annals Phys. 396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

  61. [61]

    J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev. D 99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].

  62. [62]

    C. Wetterich and M. Yamada, Variable Planck mass from the gauge invariant flow equation, Phys. Rev. D 100 (2019) 066017 [arXiv:1906.01721] [INSPIRE].

  63. [63]

    R. Loll, Quantum gravity from causal dynamical triangulations: a review, Class. Quant. Grav. 37 (2020) 013002 [arXiv:1905.08669] [INSPIRE].

  64. [64]

    R.G. Jha, J. Laiho and J. Unmuth-Yockey, Lattice quantum gravity with scalar fields, PoS(LATTICE2018)043 [arXiv:1810.09946] [INSPIRE].

  65. [65]

    S. Catterall, J. Laiho and J. Unmuth-Yockey, Kähler-Dirac fermions on Euclidean dynamical triangulations, Phys. Rev. D 98 (2018) 114503 [arXiv:1810.10626] [INSPIRE].

  66. [66]

    M.R. Niedermaier, Gravitational fixed points from perturbation theory, Phys. Rev. Lett. 103 (2009) 101303 [INSPIRE].

  67. [67]

    M. Niedermaier, Gravitational fixed points and asymptotic safety from perturbation theory, Nucl. Phys. B 833 (2010) 226 [INSPIRE].

  68. [68]

    A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum gravity, SciPost Phys. 5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

  69. [69]

    I. Balog, H. Chaté, B. Delamotte, M. Marohnic and N. Wschebor, Convergence of nonperturbative approximations to the renormalization group, Phys. Rev. Lett. 123 (2019) 240604 [arXiv:1907.01829] [INSPIRE].

  70. [70]

    A. Bonanno, A. Eichhorn, H. Gies, J.M. Pawlowski, R. Percacci, M. Reuter et al., Critical reflections on asymptotically safe gravity, Front. in Phys. 8 (2020) 269 [arXiv:2004.06810] [INSPIRE].

  71. [71]

    J.F. Donoghue, A critique of the asymptotic safety program, Front. in Phys. 8 (2020) 56 [arXiv:1911.02967] [INSPIRE].

  72. [72]

    A. Bonanno and F. Saueressig, Asymptotically safe cosmology — A status report, Comptes Rendus Physique 18 (2017) 254 [arXiv:1702.04137] [INSPIRE].

  73. [73]

    C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].

  74. [74]

    J. Rubio and C. Wetterich, Emergent scale symmetry: Connecting inflation and dark energy, Phys. Rev. D 96 (2017) 063509 [arXiv:1705.00552] [INSPIRE].

  75. [75]

    A. Platania, From renormalization group flows to cosmology, Front. in Phys. 8 (2020) 188 [arXiv:2003.13656] [INSPIRE].

  76. [76]

    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

  77. [77]

    A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic safety, JHEP 01 (2018) 030 [arXiv:1709.07252] [INSPIRE].

  78. [78]

    A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett. B 777 (2018) 217 [arXiv:1707.01107] [INSPIRE].

  79. [79]

    A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].

  80. [80]

    A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett. 121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].

  81. [81]

    A. Bonanno, A. Platania and F. Saueressig, Cosmological bounds on the field content of asymptotically safe gravity–matter models, Phys. Lett. B 784 (2018) 229 [arXiv:1803.02355] [INSPIRE].

  82. [82]

    F. Grabowski, J.H. Kwapisz and K.A. Meissner, Asymptotic safety and conformal standard model, Phys. Rev. D 99 (2019) 115029 [arXiv:1810.08461] [INSPIRE].

  83. [83]

    G.P. De Brito, Y. Hamada, A.D. Pereira and M. Yamada, On the impact of Majorana masses in gravity-matter systems, JHEP 08 (2019) 142 [arXiv:1905.11114] [INSPIRE].

  84. [84]

    J.H. Kwapisz, Asymptotic safety, the Higgs boson mass, and beyond the standard model physics, Phys. Rev. D 100 (2019) 115001 [arXiv:1907.12521] [INSPIRE].

  85. [85]

    C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity — The resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

  86. [86]

    A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter, Found. Phys. 48 (2018) 1407 [arXiv:1709.03696] [INSPIRE].

  87. [87]

    A. Eichhorn, A. Held and C. Wetterich, Quantum-gravity predictions for the fine-structure constant, Phys. Lett. B 782 (2018) 198 [arXiv:1711.02949] [INSPIRE].

  88. [88]

    A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci. 5 (2019) 47 [arXiv:1810.07615] [INSPIRE].

  89. [89]

    M. Niedermaier, The asymptotic safety scenario in quantum gravity: an introduction, Class. Quant. Grav. 24 (2007) R171 [gr-qc/0610018] [INSPIRE].

  90. [90]

    M. Reuter and F. Saueressig, Quantum Einstein gravity, New J. Phys. 14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

  91. [91]

    R. Percacci, An introduction to covariant quantum gravity and asymptotic safety, 100 Years of General Relativity, volume 3, A. Ashtekar ed., World Scientific, Singapore (2017) [INSPIRE].

  92. [92]

    A.D. Pereira, Quantum spacetime and the renormalization group: Progress and visions, in Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of physics and mathematics, 4, 2019 [arXiv:1904.07042] [INSPIRE].

  93. [93]

    M. Reuter and F. Saueressig, Quantum gravity and the functional renormalization group. Cambridge University Press, Cambridge U.K. (2019).

  94. [94]

    C. Klein, M. Lindner and S. Vogl, Radiative neutrino masses and successful SU(5) unification, Phys. Rev. D 100 (2019) 075024 [arXiv:1907.05328] [INSPIRE].

  95. [95]

    D. Croon, T.E. Gonzalo, L. Graf, N. Košnik and G. White, GUT physics in the era of the LHC, Front. in Phys. 7 (2019) 76 [arXiv:1903.04977] [INSPIRE].

  96. [96]

    B. Bajc and F. Sannino, Asymptotically safe grand unification, JHEP 12 (2016) 141 [arXiv:1610.09681] [INSPIRE].

  97. [97]

    E. Molinaro, F. Sannino and Z.W. Wang, Asymptotically safe Pati-Salam theory, Phys. Rev. D 98 (2018) 115007 [arXiv:1807.03669] [INSPIRE].

  98. [98]

    Z.-W. Wang, A. Al Balushi, R. Mann and H.-M. Jiang, Safe trinification, Phys. Rev. D 99 (2019) 115017 [arXiv:1812.11085] [INSPIRE].

  99. [99]

    S. Abel and F. Sannino, Framework for an asymptotically safe Standard Model via dynamical breaking, Phys. Rev. D 96 (2017) 055021 [arXiv:1707.06638] [INSPIRE].

  100. [100]

    T.P. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

  101. [101]

    G.F. Giudice, G. Isidori, A. Salvio and A. Strumia, Softened gravity and the extension of the standard model up to infinite energy, JHEP 02 (2015) 137 [arXiv:1412.2769] [INSPIRE].

  102. [102]

    B. Holdom, J. Ren and C. Zhang, Stable Asymptotically Free Extensions (SAFEs) of the Standard Model, JHEP 03 (2015) 028 [arXiv:1412.5540] [INSPIRE].

  103. [103]

    M.B. Einhorn and D.R.T. Jones, Induced gravity II: grand unification, JHEP 05 (2016) 185 [arXiv:1602.06290] [INSPIRE].

  104. [104]

    M.B. Einhorn and D.R.T. Jones, Asymptotic freedom in certain SO(N) and SU(N) models, Phys. Rev. D 96 (2017) 055035 [arXiv:1705.00751] [INSPIRE].

  105. [105]

    M.B. Einhorn and D.R.T. Jones, Grand unified theories in renormalisable, classically scale invariant gravity, JHEP 10 (2019) 012 [arXiv:1908.01400] [INSPIRE].

  106. [106]

    J.A. Harvey, D.B. Reiss and P. Ramond, Mass relations and neutrino oscillations in an SO(10) model, Nucl. Phys. B 199 (1982) 223 [INSPIRE].

  107. [107]

    K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].

  108. [108]

    K. Matsuda, Y. Koide and T. Fukuyama, Can the SO(10) model with two Higgs doublets reproduce the observed fermion masses?, Phys. Rev. D 64 (2001) 053015 [hep-ph/0010026] [INSPIRE].

  109. [109]

    K. Matsuda, Y. Koide, T. Fukuyama and H. Nishiura, How far can the SO(10) two Higgs model describe the observed neutrino masses and mixings?, Phys. Rev. D 65 (2002) 033008 [Erratum ibid. 65 (2002) 079904] [hep-ph/0108202] [INSPIRE].

  110. [110]

    B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].

  111. [111]

    S. Bertolini, L. Di Luzio and M. Malinsky, On the vacuum of the minimal nonsupersymmetric SO(10) unification, Phys. Rev. D 81 (2010) 035015 [arXiv:0912.1796] [INSPIRE].

  112. [112]

    G. Altarelli and G. Blankenburg, Different SO(10) paths to Fermion masses and mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].

  113. [113]

    A.S. Joshipura and K.M. Patel, Fermion masses in SO(10) models, Phys. Rev. D 83 (2011) 095002 [arXiv:1102.5148] [INSPIRE].

  114. [114]

    S. Bertolini, L. Di Luzio and M. Malinsky, Seesaw scale in the minimal renormalizable SO(10) grand unification, Phys. Rev. D 85 (2012) 095014 [arXiv:1202.0807] [INSPIRE].

  115. [115]

    G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below MGUT, JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].

  116. [116]

    A. Dueck and W. Rodejohann, Fits to SO(10) grand unified models, JHEP 09 (2013) 024 [arXiv:1306.4468] [INSPIRE].

  117. [117]

    K.S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: gauge coupling unification, proton decay, and fermion masses, Phys. Rev. D 92 (2015) 075018 [arXiv:1507.06712] [INSPIRE].

  118. [118]

    K.S. Babu, B. Bajc and S. Saad, Yukawa sector of minimal SO(10) unification, JHEP 02 (2017) 136 [arXiv:1612.04329] [INSPIRE].

  119. [119]

    T. Fukuyama and N. Okada, Alternative renormalizable minimal SO(10) GUT and seesaw scale, Mod. Phys. Lett. A 33 (2018) 1850167 [arXiv:1802.06530] [INSPIRE].

  120. [120]

    T. Ohlsson and M. Pernow, Running of fermion observables in non-supersymmetric SO(10) models, JHEP 11 (2018) 028 [arXiv:1804.04560] [INSPIRE].

  121. [121]

    J. Schwichtenberg, Gauge coupling unification without supersymmetry, Eur. Phys. J. C 79 (2019) 351 [arXiv:1808.10329] [INSPIRE].

  122. [122]

    T. Ohlsson and M. Pernow, Fits to non-supersymmetric SO(10) models with type I and II Seesaw mechanisms using renormalization group evolution, JHEP 06 (2019) 085 [arXiv:1903.08241] [INSPIRE].

  123. [123]

    P. Donà, A. Eichhorn and R. Percacci, Consistency of matter models with asymptotically safe quantum gravity, Can. J. Phys. 93 (2015) 988 [arXiv:1410.4411] [INSPIRE].

  124. [124]

    C. Wetterich, Graviton fluctuations erase the cosmological constant, Phys. Lett. B 773 (2017) 6 [arXiv:1704.08040] [INSPIRE].

  125. [125]

    G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: towards phenomenological tests of unimodular asymptotic safety, JHEP 09 (2019) 100 [arXiv:1907.11173] [INSPIRE].

  126. [126]

    S. de Alwis, A. Eichhorn, A. Held, J.M. Pawlowski, M. Schiffer and F. Versteegen, Asymptotic safety, string theory and the weak gravity conjecture, Phys. Lett. B 798 (2019) 134991 [arXiv:1907.07894] [INSPIRE].

  127. [127]

    A. Rodigast and T. Schuster, Gravitational corrections to Yukawa and ϕ4 interactions, Phys. Rev. Lett. 104 (2010) 081301 [arXiv:0908.2422] [INSPIRE].

  128. [128]

    G. Parisi, The theory of nonrenormalizable interactions. 1. The large N expansion, Nucl. Phys. B 100 (1975) 368 [INSPIRE].

  129. [129]

    K. Gawędzki and A. Kupiainen, Renormalizing the nonrenormalizable, Phys. Rev. Lett. 55 (1985) 363 [INSPIRE].

  130. [130]

    J.A. Gracey, Three loop calculations in the O(N) Gross-Neveu model, Nucl. Phys. B 341 (1990) 403 [INSPIRE].

  131. [131]

    S. Hikami and T. Muta, Fixed points and anomalous dimensions in O(n) Thirring model at 2 + ϵ dimensions, Prog. Theor. Phys. 57 (1977) 785 [INSPIRE].

  132. [132]

    B. Rosenstein, B.J. Warr and S.H. Park, The four Fermi theory is renormalizable in (2 + 1)-dimensions, Phys. Rev. Lett. 62 (1989) 1433 [INSPIRE].

  133. [133]

    G. Gat, A. Kovner and B. Rosenstein, Chiral phase transitions in d = 3 and renormalizability of four Fermi interactions, Nucl. Phys. B 385 (1992) 76 [INSPIRE].

  134. [134]

    B. Rosenstein, H.-L. Yu and A. Kovner, Critical exponents of new universality classes, Phys. Lett. B 314 (1993) 381 [INSPIRE].

  135. [135]

    L.N. Mihaila, N. Zerf, B. Ihrig, I.F. Herbut and M.M. Scherer, Gross-Neveu-Yukawa model at three loops and Ising critical behavior of Dirac systems, Phys. Rev. B 96 (2017) 165133 [arXiv:1703.08801] [INSPIRE].

  136. [136]

    N. Zerf, L.N. Mihaila, P. Marquard, I.F. Herbut and M.M. Scherer, Four-loop critical exponents for the Gross-Neveu-Yukawa models, Phys. Rev. D 96 (2017) 096010 [arXiv:1709.05057] [INSPIRE].

  137. [137]

    L. Rosa, P. Vitale and C. Wetterich, Critical exponents of the Gross-Neveu model from the effective average action, Phys. Rev. Lett. 86 (2001) 958 [hep-th/0007093] [INSPIRE].

  138. [138]

    F. Hofling, C. Nowak and C. Wetterich, Phase transition and critical behavior of the D = 3 Gross-Neveu model, Phys. Rev. B 66 (2002) 205111 [cond-mat/0203588] [INSPIRE].

  139. [139]

    J. Braun, H. Gies and D.D. Scherer, Asymptotic safety: a simple example, Phys. Rev. D 83 (2011) 085012 [arXiv:1011.1456] [INSPIRE].

  140. [140]

    H. Gies and L. Janssen, UV fixed-point structure of the three-dimensional Thirring model, Phys. Rev. D 82 (2010) 085018 [arXiv:1006.3747] [INSPIRE].

  141. [141]

    F. Gehring, H. Gies and L. Janssen, Fixed-point structure of low-dimensional relativistic fermion field theories: universality classes and emergent symmetry, Phys. Rev. D 92 (2015) 085046 [arXiv:1506.07570] [INSPIRE].

  142. [142]

    L. Classen, I.F. Herbut, L. Janssen and M.M. Scherer, Competition of density waves and quantum multicritical behavior in Dirac materials from functional renormalization, Phys. Rev. B 93 (2016) 125119 [arXiv:1510.09003] [INSPIRE].

  143. [143]

    G.P. Vacca and L. Zambelli, Multimeson Yukawa interactions at criticality, Phys. Rev. D 91 (2015) 125003 [arXiv:1503.09136] [INSPIRE].

  144. [144]

    B. Knorr, Ising and Gross-Neveu model in next-to-leading order, Phys. Rev. B 94 (2016) 245102 [arXiv:1609.03824] [INSPIRE].

  145. [145]

    L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987) 521 [INSPIRE].

  146. [146]

    F. Dowker, Introduction to causal sets and their phenomenology, Gen. Rel. Grav. 45 (2013) 1651 [INSPIRE].

  147. [147]

    S. Surya, The causal set approach to quantum gravity, Living Rev. Rel. 22 (2019) 5 [arXiv:1903.11544] [INSPIRE].

  148. [148]

    L. Glaser, The Ising model coupled to 2d orders, Class. Quant. Grav. 35 (2018) 084001 [arXiv:1802.02519] [INSPIRE].

  149. [149]

    D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

  150. [150]

    C. Wetterich, Gauge invariant flow equation, Nucl. Phys. B 931 (2018) 262 [arXiv:1607.02989] [INSPIRE].

  151. [151]

    C. Wetterich, Quadratic renormalization of the average potential and the naturalness of quadratic mass relations for the top quark, Z. Phys. C 48 (1990) 693 [INSPIRE].

  152. [152]

    H. Gies, S. Rechenberger and M.M. Scherer, Towards an asymptotic-safety scenario for chiral Yukawa systems, Eur. Phys. J. C 66 (2010) 403 [arXiv:0907.0327] [INSPIRE].

  153. [153]

    C. Wetterich, Fine tuning problem and the renormalization group, Phys. Lett. B 140 (1984) 215 [INSPIRE].

  154. [154]

    H. Aoki and S. Iso, Revisiting the naturalness problem — Who is afraid of quadratic divergences?, Phys. Rev. D 86 (2012) 013001 [arXiv:1201.0857] [INSPIRE].

  155. [155]

    S. Bornholdt and C. Wetterich, Selforganizing criticality, large anomalous mass dimension and the gauge hierarchy problem, Phys. Lett. B 282 (1992) 399 [INSPIRE].

  156. [156]

    H. Gies, S. Rechenberger, M.M. Scherer and L. Zambelli, An asymptotic safety scenario for gauged chiral Higgs-Yukawa models, Eur. Phys. J. C 73 (2013) 2652 [arXiv:1306.6508] [INSPIRE].

  157. [157]

    C. Wetterich, Gauge hierarchy due to strong interactions?, Phys. Lett. B 104 (1981) 269 [INSPIRE].

  158. [158]

    S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

  159. [159]

    N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality problem, Phys. Lett. B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

  160. [160]

    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

  161. [161]

    R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].

  162. [162]

    R.N. Mohapatra and B. Sakita, SO(2N) grand unification in an SU(N) basis, Phys. Rev. D 21 (1980) 1062 [INSPIRE].

  163. [163]

    F. Buccella, L. Cocco and C. Wetterich, An SO(10) model with 54 + 126 + 10 Higgs, Nucl. Phys. B 243 (1984) 273 [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Astrid Eichhorn.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1909.07318

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eichhorn, A., Held, A. & Wetterich, C. Predictive power of grand unification from quantum gravity. J. High Energ. Phys. 2020, 111 (2020). https://doi.org/10.1007/JHEP08(2020)111

Download citation

Keywords

  • GUT
  • Models of Quantum Gravity
  • Renormalization Group