Skip to main content

Constraining new physics with single top production at LHC

A preprint version of the article is available at arXiv.

Abstract

We study effects of beyond the Standard Model physics coupling third generation quarks to leptons of the first two generations. We parametrize these effects by dimension-six effective operators, and we also consider related simplified UV completions: scalar leptoquark and W t models. We derive new constraints on these scenarios by using recent ATLAS measurements of differential cross sections of single top production in association with a W boson, and also show how these limits will evolve with future data. We also describe how the limits can be significantly improved by using ratios of differential distributions with different flavours of leptons.

References

  1. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

  2. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

  3. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

  4. J.A. Aguilar-Saavedra, A minimal set of top anomalous couplings, Nucl. Phys. B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE].

  5. C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].

  6. J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].

  7. J.A. Aguilar-Saavedra, B. Fuks and M.L. Mangano, Pinning down top dipole moments with ultra-boosted tops, Phys. Rev. D 91 (2015) 094021 [arXiv:1412.6654] [INSPIRE].

  8. M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J. C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].

  9. D. Barducci, M. Fabbrichesi and A. Tonero, Constraints on top quark nonstandard interactions from Higgs and tt̄ production cross sections, Phys. Rev. D 96 (2017) 075022 [arXiv:1704.05478] [INSPIRE].

  10. T. Martini and M. Schulze, Electroweak loops as a probe of new physics in tt production at the LHC, JHEP 04 (2020) 017 [arXiv:1911.11244] [INSPIRE].

  11. G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].

  12. M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, JHEP 04 (2019) 014 [arXiv:1809.09624] [INSPIRE].

  13. F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the standard model effective field theory at NLO in QCD, JHEP 10 (2016) 123 [arXiv:1607.05330] [INSPIRE].

  14. C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation, JHEP 10 (2018) 005 [arXiv:1804.07773] [INSPIRE].

  15. A. Tonero and R. Rosenfeld, Dipole-induced anomalous top quark couplings at the LHC, Phys. Rev. D 90 (2014) 017701 [arXiv:1404.2581] [INSPIRE].

  16. J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( t\overline{t}b\overline{b} \) signature, JHEP 11 (2018) 131 [arXiv:1807.02130] [INSPIRE].

  17. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Is there room for CP-violation in the top-Higgs sector?, Phys. Rev. D 94 (2016) 016002 [arXiv:1603.03049] [INSPIRE].

  18. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

  19. K. Fuyuto and M. Ramsey-Musolf, Top down electroweak dipole operators, Phys. Lett. B 781 (2018) 492 [arXiv:1706.08548] [INSPIRE].

  20. S. Bißmann, J. Erdmann, C. Grunwald, G. Hiller and K. Kröninger, Constraining top-quark couplings combining top-quark and B decay observables, Eur. Phys. J. C 80 (2020) 136 [arXiv:1909.13632] [INSPIRE].

  21. E. Fuchs, M. Losada, Y. Nir and Y. Viernik, C P violation from τ , t and b dimension-6 Yukawa couplings — Interplay of baryogenesis, EDM and Higgs physics, JHEP 05 (2020) 056 [arXiv:2003.00099] [INSPIRE].

  22. A. Escamilla, A.O. Bouzas and F. Larios, Single top production at linear e e+ colliders, Phys. Rev. D 97 (2018) 033004 [arXiv:1712.02763] [INSPIRE].

  23. G. Durieux, M. Perell´o, M. Vos and C. Zhang, Global and optimal probes for the top-quark effective field theory at future lepton colliders, JHEP 10 (2018) 168 [arXiv:1807.02121] [INSPIRE].

  24. CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP 11 (2019) 003 [arXiv:1807.02441] [INSPIRE].

  25. G. Durieux and O. Matsedonskyi, The top-quark window on compositeness at future lepton colliders, JHEP 01 (2019) 072 [arXiv:1807.10273] [INSPIRE].

  26. G. Durieux, J. Gu, E. Vryonidou and C. Zhang, Probing top-quark couplings indirectly at Higgs factories, Chin. Phys. C 42 (2018) 123107 [arXiv:1809.03520] [INSPIRE].

  27. A. Vasquez, C. Degrande, A. Tonero and R. Rosenfeld, New physics in double Higgs production at future e+ e colliders, JHEP 05 (2019) 020 [arXiv:1901.05979] [INSPIRE].

  28. R. Jafari, P. Eslami, M. Mohammadi Najafabadi and H. Khanpour, Constraining the top quark effective field theory using the top quark pair production in association with a jet at future lepton colliders, Phys. Lett. B 806 (2020) 135469 [arXiv:1909.00592] [INSPIRE].

  29. A. Buckley, et al., Global fit of top quark effective theory to data, Phys. Rev. D 92 (2015) 091501 [arXiv:1506.08845] [INSPIRE].

  30. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

  31. S. Brown et al., TopFitter: Fitting top-quark Wilson Coefficients to Run II data, PoS ICHEP2018 (2019) 293 [arXiv:1901.03164] [INSPIRE].

  32. N.P. Hartland et al., A Monte Carlo global analysis of the standard model effective field theory: the top quark sector, JHEP 04 (2019) 100 [arXiv:1901.05965] [INSPIRE].

  33. I. Brivio et al., O new physics, where art thou? A global search in the top sector, JHEP 02 (2020) 131 [arXiv:1910.03606] [INSPIRE].

  34. D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].

  35. ATLAS collaboration, Measurement of differential cross-sections of a single top quark produced in association with a W boson at \( \sqrt{s} \) = 13 TeV with ATLAS, Eur. Phys. J. C 78 (2018) 186 [arXiv:1712.01602] [INSPIRE].

  36. J.F. Kamenik, A. Katz and D. Stolarski, On lepton flavor universality in top quark decays, JHEP 01 (2019) 032 [arXiv:1808.00964] [INSPIRE].

  37. Y. Afik, S. Bar-Shalom, J. Cohen and Y. Rozen, Searching for new physics with \( b\overline{b}{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} \) contact interactions, Phys. Lett. B 807 (2020) 135541 [arXiv:1912.00425] [INSPIRE].

  38. I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].

  39. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+ γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  40. CMS collaboration, Search for pair production of second-generation leptoquarks at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 032014 [arXiv:1808.05082] [INSPIRE].

  41. CMS collaboration, Search for leptoquarks coupled to third-generation quarks in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett. 121 (2018) 241802 [arXiv:1809.05558] [INSPIRE].

  42. CMS collaboration, Search for pair production of first-generation scalar leptoquarks at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 052002 [arXiv:1811.01197] [INSPIRE].

  43. ATLAS collaboration, Searches for scalar leptoquarks and differential cross-section measurements in dilepton-dijet events in proton-proton collisions at a centre-of-mass energy of \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Eur. Phys. J. C 79 (2019) 733 [arXiv:1902.00377] [INSPIRE].

  44. ATLAS collaboration, Searches for third-generation scalar leptoquarks in \( \sqrt{s} \) = 13 TeV pp collisions with the ATLAS detector, JHEP 06 (2019) 144 [arXiv:1902.08103] [INSPIRE].

  45. CMS collaboration, Projection of searches for pair production of scalar leptoquarks decaying to a top quark and a charged lepton at the HL-LHC, CMS-PAS-FTR-18-008 (2018).

  46. I. Dorsner, S. Fajfer and A. Greljo, Cornering scalar leptoquarks at LHC, JHEP 10 (2014) 154 [arXiv:1406.4831] [INSPIRE].

  47. T. Mandal, S. Mitra and S. Seth, Single productions of colored particles at the LHC: an example with scalar leptoquarks, JHEP 07 (2015) 028 [arXiv:1503.04689] [INSPIRE].

  48. B. Diaz, M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: pair production, JHEP 10 (2017) 097 [arXiv:1706.05033] [INSPIRE].

  49. S. Bansal, R.M. Capdevilla, A. Delgado, C. Kolda, A. Martin and N. Raj, Hunting leptoquarks in monolepton searches, Phys. Rev. D 98 (2018) 015037 [arXiv:1806.02370] [INSPIRE].

  50. A. Monteux and A. Rajaraman, B anomalies and leptoquarks at the LHC: beyond the lepton-quark final state, Phys. Rev. D 98 (2018) 115032 [arXiv:1803.05962] [INSPIRE].

  51. A. Alves, O.J.P. Eboli, G. Grilli Di Cortona and R.R. Moreira, Indirect and monojet constraints on scalar leptoquarks, Phys. Rev. D 99 (2019) 095005 [arXiv:1812.08632] [INSPIRE].

  52. W. Dekens, J. de Vries, M. Jung and K.K. Vos, The phenomenology of electric dipole moments in models of scalar leptoquarks, JHEP 01 (2019) 069 [arXiv:1809.09114] [INSPIRE].

  53. M. Schmaltz and Y.-M. Zhong, The leptoquark Hunter’s guide: large coupling, JHEP 01 (2019) 132 [arXiv:1810.10017] [INSPIRE].

  54. C. Borschensky, B. Fuks, A. Kulesza and D. Schwartl¨ander, Scalar leptoquark pair production at hadron colliders, Phys. Rev. D 101 (2020) 115017 [arXiv:2002.08971] [INSPIRE].

  55. K. Chandak, T. Mandal and S. Mitra, Hunting for scalar leptoquarks with boosted tops and light leptons, Phys. Rev. D 100 (2019) 075019 [arXiv:1907.11194] [INSPIRE].

  56. CMS collaboration, Search for new physics with multileptons and jets in 35.9 fb1 of pp collision data at \( \sqrt{s} \) = 13 TeV, CMS-PAS-SUS-16-041 (2017).

  57. P. Arnan, D. Becirevic, F. Mescia and O. Sumensari, Probing low energy scalar leptoquarks by the leptonic W and Z couplings, JHEP 02 (2019) 109 [arXiv:1901.06315] [INSPIRE].

  58. K. Hsieh, K. Schmitz, J.-H. Yu and C.-P. Yuan, Global analysis of general SU(2) × SU(2) × U(1) models with precision data, Phys. Rev. D 82 (2010) 035011 [arXiv:1003.3482] [INSPIRE].

  59. A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].

  60. S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].

  61. S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].

  62. Y.L. Wang, B. Wei, J.H. Sheng, R.M. Wang and Y.D. Yang, Studying W boson contributions in decays within general SU(2)1 × SU(2)2 × U(1)X models, J. Phys. G 45 (2018) 055002.

  63. Y.B. Zuo, C.X. Yue, W. Yang, Y.N. Hao and W.R. Zhang, New gauge boson W I and radiative leptonic decays of charged B and D mesons, Eur. Phys. J. C 78 (2018) 571.

  64. S.M. Bilenky, S.T. Petcov and B. Pontecorvo, Lepton mixing, μ → e + γ decay and neutrino oscillations, Phys. Lett. B 67 (1977) 309 [INSPIRE].

  65. A. Greljo and D. Marzocca, High-pT dilepton tails and flavor physics, Eur. Phys. J. C 77 (2017) 548 [arXiv:1704.09015] [INSPIRE].

  66. J.A. Aguilar-Saavedra, N.F. Castro and A. Onofre, Constraints on the W tb vertex from early LHC data, Phys. Rev. D 83 (2011) 117301 [arXiv:1105.0117] [INSPIRE].

  67. M. Fabbrichesi, M. Pinamonti and A. Tonero, Limits on anomalous top quark gauge couplings from Tevatron and LHC data, Eur. Phys. J. C 74 (2014) 3193 [arXiv:1406.5393] [INSPIRE].

  68. Q.-H. Cao, B. Yan, J.-H. Yu and C. Zhang, A general analysis of W tb anomalous couplings, Chin. Phys. C 41 (2017) 063101 [arXiv:1504.03785] [INSPIRE].

  69. A. Jueid, Probing anomalous W tb couplings at the LHC in single t-channel top quark production, Phys. Rev. D 98 (2018) 053006 [arXiv:1805.07763] [INSPIRE].

  70. J.A. Aguilar-Saavedra, Dilepton azimuthal correlations in tt̄ production, JHEP 09 (2018) 116 [arXiv:1806.07438] [INSPIRE].

  71. J.M. Arnold, B. Fornal and M.B. Wise, Simplified models with baryon number violation but no proton decay, Phys. Rev. D 87 (2013) 075004 [arXiv:1212.4556] [INSPIRE].

  72. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  73. I. Doršner and A. Greljo, Leptoquark toolbox for precision collider studies, JHEP 05 (2018) 126 [arXiv:1801.07641] [INSPIRE].

  74. B. Fuks and J. Donin, http://feynrules.irmp.ucl.ac.be/wiki/Wprime.

  75. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

  76. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

  77. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  78. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  79. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

  80. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].

  81. R. Alonso, B. Grinstein and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184 [arXiv:1505.05164] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Tonero.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2004.07856

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stolarski, D., Tonero, A. Constraining new physics with single top production at LHC. J. High Energ. Phys. 2020, 36 (2020). https://doi.org/10.1007/JHEP08(2020)036

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2020)036

Keywords

  • Beyond Standard Model
  • Effective Field Theories