Skip to main content

One-loop β-functions in 4-derivative gauge theory in 6 dimensions

A preprint version of the article is available at arXiv.

Abstract

A classically scale-invariant 6d analog of the 4d Yang-Mills theory is the 4-derivative (∇F )2 + F 3 gauge theory with two independent couplings. Motivated by a search for a perturbatively conformal but possibly non-unitary 6d models we compute the one-loop β-functions in this theory. A systematic way of doing this using the back-ground field method requires the (previously unknown) expression for the b6 Seeley-DeWitt coefficient for a generic 4-derivative operator; we derive it here. As an application, we also compute the one-loop β-function in the (1,0) supersymmetric (∇F )2 6d gauge theory con-structed in hep-th/0505082.

References

  1. E.S. Fradkin and A.A. Tseytlin, Quantum Properties of Higher Dimensional and Dimensionally Reduced Supersymmetric Theories, Nucl. Phys.B 227 (1983) 252 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity, Nucl. Phys.B 201 (1982) 469 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. B. Grinstein and D. O’Connell, One-Loop Renormalization of Lee-Wick Gauge Theory, Phys. Rev.D 78 (2008) 105005 [arXiv:0801.4034] [INSPIRE].

  4. L. Casarin, On higher-derivative gauge theories, arXiv:1710.08021 [INSPIRE].

  5. E.A. Ivanov, A.V. Smilga and B.M. Zupnik, Renormalizable supersymmetric gauge theory in six dimensions, Nucl. Phys.B 726 (2005) 131 [hep-th/0505082] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. A.V. Smilga, Chiral anomalies in higher-derivative supersymmetric 6D theories, Phys. Lett.B 647 (2007) 298 [hep-th/0606139] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. M. Beccaria and A.A. Tseytlin, Conformal a-anomaly of some non-unitary 6d superconformal theories, JHEP09 (2015) 017 [arXiv:1506.08727] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  8. M. Beccaria and A.A. Tseytlin, Conformal anomaly c-coefficients of superconformal 6d theories, JHEP01 (2016) 001 [arXiv:1510.02685] [INSPIRE].

  9. S. Giombi, I.R. Klebanov and G. Tarnopolsky, Conformal QED d, F -Theorem and the ϵ Expansion, J. Phys.A 49 (2016) 135403 [arXiv:1508.06354] [INSPIRE].

    ADS  MATH  Google Scholar 

  10. S. Giombi, G. Tarnopolsky and I.R. Klebanov, On C Jand C Tin Conformal QED, JHEP08 (2016) 156 [arXiv:1602.01076] [INSPIRE].

    ADS  Article  Google Scholar 

  11. H. Osborn and A. Stergiou, C Tfor non-unitary CFTs in higher dimensions, JHEP06 (2016) 079 [arXiv:1603.07307] [INSPIRE].

    ADS  Article  Google Scholar 

  12. K.-W. Huang, R. Roiban and A.A. Tseytlin, Self-dual 6d 2-form fields coupled to non-abelian gauge field: quantum corrections, JHEP06 (2018) 134 [arXiv:1804.05059] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. H. Johansson, G. Mogull and F. Teng, Unraveling conformal gravity amplitudes, JHEP09 (2018) 080 [arXiv:1806.05124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. E.A. Ivanov and A.V. Smilga, Conformal properties of hypermultiplet actions in six dimensions, Phys. Lett.B 637 (2006) 374 [hep-th/0510273] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. S.M. Kuzenko, J. Novak and S. Theisen, New superconformal multiplets and higher derivative invariants in six dimensions, Nucl. Phys.B 925 (2017) 348 [arXiv:1707.04445] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. S.M. Kuzenko, J. Novak and I.B. Samsonov, Chiral anomalies in six dimensions from harmonic superspace, JHEP11 (2017) 145 [arXiv:1708.08238] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. P.B. Gilkey, The Spectral geometry of a Riemannian manifold, J. Diff. Geom.10 (1975) 601 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  18. E.S. Fradkin and A.A. Tseytlin, Conformal Anomaly in Weyl Theory and Anomaly Free Superconformal Theories, Phys. Lett.134B (1984) 187 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept.119 (1985) 233 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. I. Jack and H. Osborn, Two Loop Background Field Calculations for Arbitrary Background Fields, Nucl. Phys.B 207 (1982) 474 [INSPIRE].

    ADS  Article  Google Scholar 

  21. I. Jack and H. Osborn, Background Field Calculations in Curved Space-time. 1. General Formalism and Application to Scalar Fields, Nucl. Phys.B 234 (1984) 331 [INSPIRE].

    ADS  Article  Google Scholar 

  22. B. Grinstein, A. Stergiou, D. Stone and M. Zhong, Two-loop renormalization of multiflavor φ 3theory in six dimensions and the trace anomaly, Phys. Rev.D 92 (2015) 045013 [arXiv:1504.05959] [INSPIRE].

    ADS  Google Scholar 

  23. A.E.M. van de Ven, Explicit Counter Action Algorithms in Higher Dimensions, Nucl. Phys.B 250 (1985) 593 [INSPIRE].

    ADS  Google Scholar 

  24. R.R. Metsaev and A.A. Tseytlin, On loop corrections to string theory effective actions, Nucl. Phys.B 298 (1988) 109 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. D.V. Vassilevich, Heat kernel expansion: Users manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. A.E.M. van de Ven, Index free heat kernel coefficients, Class. Quant. Grav.15 (1998) 2311 [hep-th/9708152] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. P.B. Gilkey, The spectral geometry of the higher order Laplacian, Duke Math. J.47 (1980) 511 [Erratum ibid. 48 (1981) 887].

    MathSciNet  Article  Google Scholar 

  28. A.O. Barvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity, Phys. Rept.119 (1985) 1 [INSPIRE].

  29. I.G. Avramidi, Heat kernel and quantum gravity, Lect. Notes Phys. Monogr.64 (2000) 1 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  30. A. Smilga, Classical and quantum dynamics of higher-derivative systems, Int. J. Mod. Phys.A 32 (2017) 1730025 [arXiv:1710.11538] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. I.L. Buchbinder, E.A. Ivanov, B.S. Merzlikin and K.V. Stepanyantz, Gauge dependence of the one-loop divergences in 6D, \( \mathcal{N} \) = (1, 0) abelian theory, Nucl. Phys.B 936 (2018) 638 [arXiv:1808.08446] [INSPIRE].

    ADS  Article  Google Scholar 

  32. G. Bossard, E. Ivanov and A. Smilga, Ultraviolet behavior of 6D supersymmetric Yang-Mills theories and harmonic superspace, JHEP12 (2015) 085 [arXiv:1509.08027] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. J.A. Gracey, Six dimensional QCD at two loops, Phys. Rev.D 93 (2016) 025025 [arXiv:1512.04443] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  34. J.A. Gracey, β-functions in higher dimensional field theories, PoS(LL2016) 063 (2016) [arXiv:1610.04447] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady A. Tseytlin.

Additional information

ArXiv ePrint: 1907.02501

Also at the Lebedev Institute, Moscow. (Arkady A. Tseytlin)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casarin, L., Tseytlin, A.A. One-loop β-functions in 4-derivative gauge theory in 6 dimensions. J. High Energ. Phys. 2019, 159 (2019). https://doi.org/10.1007/JHEP08(2019)159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2019)159

Keywords

  • Field Theories in Higher Dimensions
  • Supersymmetric Gauge Theory