On the impact of Majorana masses in gravity-matter systems

Abstract

We investigate the Higgs-Yukawa system with Majorana masses of a fermion within asymptotically safe quantum gravity. Using the functional renormalization group method we derive the beta functions of the Majorana masses and the Yukawa coupling constant and discuss the possibility of a non-trivial fixed point for the Yukawa coupling constant. In the gravitational sector we take into account higher derivative terms such as R2 and RμνRμν in addition to the Einstein-Hilbert term for our truncation. For a certain value of the gravitational coupling constants and the Majorana masses, the Yukawa coupling constant has a non-trivial fixed point value and becomes an irrelevant parameter being thus a prediction of the theory. We also discuss consequences due to the Majorana mass terms to the running of the quartic coupling constant in the scalar sector.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity: An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979), chapter 16.

  2. [2]

    M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living Rev. Rel.9 (2006) 5 [INSPIRE].

    Article  MATH  Google Scholar 

  3. [3]

    M. Niedermaier, The Asymptotic safety scenario in quantum gravity: An Introduction, Class. Quant. Grav.24 (2007) R171 [gr-qc/0610018] [INSPIRE].

  4. [4]

    R. Percacci, Asymptotic Safety, arXiv:0709.3851 [INSPIRE].

  5. [5]

    M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys.14 (2012) 055022 [arXiv:1202.2274] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. [6]

    S. Nagy, Lectures on renormalization and asymptotic safety, Annals Phys.350 (2014) 310 [arXiv:1211.4151] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. [7]

    A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation, Annals Phys.324 (2009) 414 [arXiv:0805.2909] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. [8]

    R. Percacci, 100 Years of General Relativity. Vol. 3: An Introduction to Covariant Quantum Gravity and Asymptotic Safety, World Scientific, New York U.S.A. (2017).

  9. [9]

    A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron. Space Sci.5 (2019) 47 [arXiv:1810.07615] [INSPIRE].

    Article  ADS  Google Scholar 

  10. [10]

    M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group, Cambridge University Press, Cambridge U.K. (2019).

    Google Scholar 

  11. [11]

    C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].

  12. [12]

    H. Kawai and M. Ninomiya, Renormalization Group and Quantum Gravity, Nucl. Phys.B 336 (1990) 115 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. [13]

    J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative Quantum Gravity, Phys. Rept.519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. [14]

    J. Laiho, S. Bassler, D. Coumbe, D. Du and J.T. Neelakanta, Lattice Quantum Gravity and Asymptotic Safety, Phys. Rev.D 96 (2017) 064015 [arXiv:1604.02745] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. [15]

    T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl.131 (1998) 395 [hep-th/9802039] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept.363 (2002) 223 [hep-ph/0005122] [INSPIRE].

  17. [17]

    K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications, Int. J. Mod. Phys.B 14 (2000) 1249 [INSPIRE].

    ADS  MATH  Google Scholar 

  18. [18]

    C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept.348 (2001) 91 [hep-th/0002034] [INSPIRE].

  19. [19]

    J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys.1 (2003) 1 [hep-th/0110026] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys.322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. [21]

    H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys.852 (2012) 287 [hep-ph/0611146] [INSPIRE].

  22. [22]

    B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes Phys.852 (2012) 49 [cond-mat/0702365] [INSPIRE].

  23. [23]

    O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept.511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. [24]

    J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J. Phys.G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev.D 57 (1998) 971 [hep-th/9605030] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. [26]

    W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys.102 (1999) 181 [hep-th/9907027] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. [27]

    M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation, Phys. Rev.D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

  28. [28]

    D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett.92 (2004) 201301 [hep-th/0312114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. [29]

    A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett.97 (2006) 221301 [hep-th/0607128] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. [30]

    D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity, Mod. Phys. Lett.A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. [31]

    D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in asymptotically safe gravity, Nucl. Phys.B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. [32]

    E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in Quantum Einstein Gravity, Annals Phys.326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. [33]

    E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity, Phys. Rev. Lett.106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared completion of quantum gravity, Phys. Lett.B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. [35]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic safety, arXiv:1301.4191 [INSPIRE].

  36. [36]

    D. Benedetti, On the number of relevant operators in asymptotically safe gravity, EPL102 (2013) 20007 [arXiv:1301.4422] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow equations in quantum gravity, Phys. Rev.D 89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].

  38. [38]

    K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic safety of quantum gravity, Phys. Rev.D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. [39]

    N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global Flows in Quantum Gravity, Phys. Rev.D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

  40. [40]

    N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local Quantum Gravity, Phys. Rev.D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    H. Gies, B. Knorr and S. Lippoldt, Generalized Parametrization Dependence in Quantum Gravity, Phys. Rev.D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].

  42. [42]

    H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is Asymptotically Safe, Phys. Rev. Lett.116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

    Article  ADS  Google Scholar 

  43. [43]

    J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes: Asymptotically safe and sound, Phys. Rev.D 95 (2017) 086013 [arXiv:1609.04813] [INSPIRE].

  44. [44]

    N. Christiansen, Four-Derivative Quantum Gravity Beyond Perturbation Theory, arXiv:1612.06223 [INSPIRE].

  45. [45]

    T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically safe quantum gravity, Eur. Phys. J.C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].

    Article  ADS  Google Scholar 

  46. [46]

    B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev.D 96 (2017) 065020 [arXiv:1707.01397] [INSPIRE].

  47. [47]

    B. Knorr, Infinite order quantum-gravitational correlations, Class. Quant. Grav.35 (2018) 115005 [arXiv:1710.07055] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. [48]

    N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of quantum gravity, Phys. Rev.D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].

  49. [49]

    K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of quantum gravity beyond Ricci scalars, Phys. Rev.D 97 (2018) 086006 [arXiv:1801.00162] [INSPIRE].

  50. [50]

    K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity, Phys. Rev.D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].

    ADS  Google Scholar 

  51. [51]

    R. Percacci and D. Perini, Constraints on matter from asymptotic safety, Phys. Rev.D 67 (2003) 081503 [hep-th/0207033] [INSPIRE].

  52. [52]

    R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev.D 68 (2003) 044018 [hep-th/0304222] [INSPIRE].

  53. [53]

    G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I, Class. Quant. Grav.27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].

  54. [54]

    O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa systems, Phys. Lett.B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

    Article  ADS  Google Scholar 

  55. [55]

    A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys.13 (2011) 125012 [arXiv:1104.5366] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario, Phys. Rev.D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum gravity, Phys. Rev.D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

  58. [58]

    P. Donà, A. Eichhorn and R. Percacci, Consistency of matter models with asymptotically safe quantum gravity, Can. J. Phys.93 (2015) 988 [arXiv:1410.4411] [INSPIRE].

    Article  ADS  Google Scholar 

  59. [59]

    P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to gravity, Phys. Lett.B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. [60]

    K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically safe gravity, Class. Quant. Grav.33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. [61]

    J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems, Phys. Rev.D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

  62. [62]

    P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system of gravity and scalar matter, Phys. Rev.D 93 (2016) 044049 [Erratum ibid.D 93 (2016) 129904][arXiv:1512.01589] [INSPIRE].

  63. [63]

    J. Meibohm and J.M. Pawlowski, Chiral fermions in asymptotically safe quantum gravity, Eur. Phys. J.C 76 (2016) 285 [arXiv:1601.04597] [INSPIRE].

    Article  ADS  Google Scholar 

  64. [64]

    A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model, Phys. Rev.D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. [65]

    A. Eichhorn and S. Lippoldt, Quantum gravity and Standard-Model-like fermions, Phys. Lett.B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].

    Article  ADS  Google Scholar 

  66. [66]

    J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated gravity-matter systems, JHEP05 (2017) 093 [arXiv:1702.06539] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. [67]

    Y. Hamada and M. Yamada, Asymptotic safety of higher derivative quantum gravity non-minimally coupled with a matter system, JHEP08 (2017) 070 [arXiv:1703.09033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. [68]

    N. Christiansen, A. Eichhorn and A. Held, Is scale-invariance in gauge-Yukawa systems compatible with the graviton?, Phys. Rev.D 96 (2017) 084021 [arXiv:1705.01858] [INSPIRE].

  69. [69]

    A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for matter, Phys. Rev.D 96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].

  70. [70]

    A. Eichhorn, The asymptotic safety paradigm for quantum spacetime and matter, in Black Holes, Gravitational Waves and Spacetime Singularities, Rome Italy (2017).

    Google Scholar 

  71. [71]

    A. Eichhorn, S. Lippoldt and V. Skrinjar, Nonminimal hints for asymptotic safety, Phys. Rev.D 97 (2018) 026002 [arXiv:1710.03005] [INSPIRE].

  72. [72]

    N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity with matter, Phys. Rev.D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. [73]

    A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten the Planck-scale Higgs potential, Phys. Rev.D 97 (2018) 086004 [arXiv:1712.00319] [INSPIRE].

  74. [74]

    N. Alkofer and F. Saueressig, Asymptotically safe f (R)-gravity coupled to matter I: the polynomial case, Annals Phys.396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. [75]

    A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum gravity, SciPost Phys.5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

    Article  ADS  Google Scholar 

  76. [76]

    A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is quantum gravity?, Phys. Lett.B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. [77]

    A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity, Phys. Rev.D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

  78. [78]

    J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in asymptotically safe quantum gravity, Phys. Rev.D 99 (2019) 086010 [arXiv:1811.11706] [INSPIRE].

  79. [79]

    A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J. Mod. Phys.A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. [80]

    P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys. Rev.D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  81. [81]

    G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and field parametrization dependence in the f (R) truncation, Phys. Rev.D 98 (2018) 026027 [arXiv:1805.09656] [INSPIRE].

  82. [82]

    U. Harst and M. Reuter, QED coupled to QEG, JHEP05 (2011) 119 [arXiv:1101.6007] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  83. [83]

    N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality problem, Phys. Lett.B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. [84]

    A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic safety, JHEP01 (2018) 030 [arXiv:1709.07252] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. [85]

    M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass, Phys. Lett.B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

    Article  ADS  Google Scholar 

  86. [86]

    A. Eichhorn, A. Held and C. Wetterich, Quantum-gravity predictions for the fine-structure constant, Phys. Lett.B 782 (2018) 198 [arXiv:1711.02949] [INSPIRE].

    Article  ADS  Google Scholar 

  87. [87]

    A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe quantum gravity, Phys. Rev. Lett.121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].

    Article  ADS  Google Scholar 

  88. [88]

    C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravitythe resurgence mechanism, Phys. Lett.B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

    Article  ADS  Google Scholar 

  89. [89]

    C. Wetterich, Graviton fluctuations erase the cosmological constant, Phys. Lett.B 773 (2017) 6 [arXiv:1704.08040] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. [90]

    P. Minkowski, μeγ at a Rate of One Out of 109Muon Decays?, Phys. Lett.67B (1977) 421 [INSPIRE].

  91. [91]

    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc.C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  92. [92]

    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Prog. Theor. Phys.64 (1980) 1103 [INSPIRE].

    Article  ADS  Google Scholar 

  93. [93]

    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  94. [94]

    K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev.D 16 (1977) 953 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  95. [95]

    B. Holdom and J. Ren, Quadratic gravity: from weak to strong, Int. J. Mod. Phys.D 25 (2016) 1643004 [arXiv:1605.05006] [INSPIRE].

    Article  ADS  Google Scholar 

  96. [96]

    J.F. Donoghue, Quartic propagators, negative norms and the physical spectrum, Phys. Rev.D 96 (2017) 044007 [arXiv:1704.01533] [INSPIRE].

  97. [97]

    D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP05 (2018) 027 [arXiv:1803.07777] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. [98]

    D. Becker, C. Ripken and F. Saueressig, On avoiding Ostrogradski instabilities within Asymptotic Safety, JHEP12 (2017) 121 [arXiv:1709.09098] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. [99]

    C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett.B 301 (1993) 90 [arXiv:1710.05815] [INSPIRE].

    Article  ADS  Google Scholar 

  100. [100]

    A. Nink, Field Parametrization Dependence in Asymptotically Safe Quantum Gravity, Phys. Rev.D 91 (2015) 044030 [arXiv:1410.7816] [INSPIRE].

  101. [101]

    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity I: Einstein theory, JHEP06 (2016) 115 [arXiv:1605.00454] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. [102]

    N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity II: Higher derivative gravity, Eur. Phys. J.C 77 (2017) 611 [arXiv:1610.07991] [INSPIRE].

    Article  ADS  Google Scholar 

  103. [103]

    N. Ohta, R. Percacci and A.D. Pereira, f (R, \( {R}_{\mu \nu}^2 \)) at one loop, Phys. Rev.D 97 (2018) 104039 [arXiv:1804.01608] [INSPIRE].

  104. [104]

    G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards phenomenological tests of unimodular asymptotic safety, arXiv:1907.11173 [INSPIRE].

  105. [105]

    J.W. York, Jr., Conformatlly invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds and the initial value problem of general relativity, J. Math. Phys.14 (1973) 456 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  106. [106]

    D.F. Litim, Optimized renormalization group flows, Phys. Rev.D 64 (2001) 105007 [hep-th/0103195] [INSPIRE].

    ADS  Google Scholar 

  107. [107]

    P. Donà and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev.D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].

  108. [108]

    A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett.B 777 (2018) 217 [arXiv:1707.01107] [INSPIRE].

    Article  ADS  Google Scholar 

  109. [109]

    I.L. Shapiro, Asymptotic Behavior of Effective Yukawa Coupling Constants in Quantum R 2Gravity With Matter, Class. Quant. Grav.6 (1989) 1197 [INSPIRE].

    Article  ADS  Google Scholar 

  110. [110]

    I.L. Buchbinder, O.K. Kalashnikov, I.L. Shapiro, V.B. Vologodsky and J.J. Wolfengaut, The Stability of Asymptotic Freedom in Grand Unified Models Coupled to R 2Gravity, Phys. Lett.B 216 (1989) 127 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  111. [111]

    I. Buchbinder, S. Odintsov and I. Shapiro, Effective Action in Quantum Gravity, CRC Press, Boca Raton U.S.A. (1992).

    Google Scholar 

  112. [112]

    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  113. [113]

    CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  114. [114]

    G.P. Vacca and O. Zanusso, Asymptotic Safety in Einstein Gravity and Scalar-Fermion Matter, Phys. Rev. Lett.105 (2010) 231601 [arXiv:1009.1735] [INSPIRE].

    Article  ADS  Google Scholar 

  115. [115]

    L. Bosma, B. Knorr and F. Saueressig, Resolving Spacetime Singularities within Asymptotic Safety, arXiv:1904.04845 [INSPIRE].

  116. [116]

    B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual ideas and computational toolbox, arXiv:1907.02903 [INSPIRE].

  117. [117]

    F. Bezrukov, M. Yu. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs Boson Mass and New Physics, JHEP10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  118. [118]

    F. Finster, Local U(2, 2) symmetry in relativistic quantum mechanics, J. Math. Phys.39 (1998) 6276 [hep-th/9703083] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  119. [119]

    H.A. Weldon, Fermions without vierbeins in curved space-time, Phys. Rev.D 63 (2001) 104010 [gr-qc/0009086][INSPIRE].

  120. [120]

    H. Gies and S. Lippoldt, Fermions in gravity with local spin-base invariance, Phys. Rev.D 89 (2014) 064040 [arXiv:1310.2509] [INSPIRE].

  121. [121]

    S. Lippoldt, Spin-base invariance of Fermions in arbitrary dimensions, Phys. Rev.D 91 (2015) 104006 [arXiv:1502.05607] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  122. [122]

    D. Becker and M. Reuter, En route to Background Independence: Broken split-symmetry and how to restore it with bi-metric average actions, Annals Phys.350 (2014) 225 [arXiv:1404.4537] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. [123]

    P. Labus, T.R. Morris and Z.H. Slade, Background independence in a background dependent renormalization group, Phys. Rev.D 94 (2016) 024007 [arXiv:1603.04772] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gustavo P. de Brito.

Additional information

ArXiv ePrint: 1905.11114

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Brito, G.P., Hamada, Y., Pereira, A.D. et al. On the impact of Majorana masses in gravity-matter systems. J. High Energ. Phys. 2019, 142 (2019). https://doi.org/10.1007/JHEP08(2019)142

Download citation

Keywords

  • Models of Quantum Gravity
  • Nonperturbative Effects
  • Renormalization Group