Skip to main content

Measurement of the production of charm jets tagged with D0 mesons in pp collisions at \( \sqrt{\mathrm{s}}=7 \) TeV

A preprint version of the article is available at arXiv.

Abstract

The production of charm jets in proton-proton collisions at a center-of-mass energy of \( \sqrt{s}=7 \) TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of 6.23 nb−1, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D0 meson among their constituents. The D0 mesons are reconstructed from their hadronic decay D0 →Kπ+. The D0-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-kT algorithm in the jet transverse momentum range \( 5<{p}_{{\mathrm{T}}_{,\mathrm{jet}}}^{\mathrm{ch}} \)< 30 GeV/c and pseudorapidity |ηjet| < 0.5. The fraction of charged jets containing a D0-meson increases with \( {p}_{{\mathrm{T}}_{,\mathrm{jet}}}^{\mathrm{ch}} \) from 0.042 ± 0.004 (stat) ± 0.006 (syst) to 0.080 ± 0.009 (stat) ± 0.008 (syst). The distribution of D0-meson tagged jets as a function of the jet momentum fraction carried by the D0 meson in the direction of the jet axis \( \left({z}_{\parallel}^{\mathrm{ch}}\right) \) is reported for two ranges of jet transverse momenta, \( 5<{p}_{{\mathrm{T}}_{,\mathrm{jet}}}^{\mathrm{ch}} \)< 15 GeV/c and \( 15<{p}_{{\mathrm{T}}_{,\mathrm{jet}}}^{\mathrm{ch}} \)< 30 GeV/c in the intervals \( 0.2<{z}_{\Big\Vert}^{\mathrm{ch}}<1.0 \) and \( 0.4<{z}_{\Big\Vert}^{\mathrm{ch}}<1.0 \), respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.

References

  1. [1]

    J.C. Collins, D.E. Soper and G.F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys.5 (1989) 1 [hep-ph/0409313] [INSPIRE].

  2. [2]

    S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production, Nucl. Phys.B 366 (1991) 135 [INSPIRE].

  3. [3]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J.C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

  4. [4]

    CDF collaboration, Measurement of prompt charm meson production cross sections in p \( \overline{p} \)collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett.91 (2003) 241804 [hep-ex/0307080] [INSPIRE].

  5. [5]

    STAR collaboration, Measurements of D 0and D Production in p + p Collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev.D 86 (2012) 072013 [arXiv:1204.4244] [INSPIRE].

  6. [6]

    ATLAS collaboration, Measurement of D ∗±, D ±and \( {D}_s^{\pm } \)meson production cross sections in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Nucl. Phys.B 907 (2016) 717 [arXiv:1512.02913] [INSPIRE].

  7. [7]

    ALICE collaboration, Measurement of charm production at central rapidity in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP01 (2012) 128 [arXiv:1111.1553] [INSPIRE].

  8. [8]

    ALICE collaboration, D-meson production in p-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV and in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev.C 94 (2016) 054908 [arXiv:1605.07569] [INSPIRE].

  9. [9]

    ALICE collaboration, Measurement of D-meson production at mid-rapidity in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J.C 77 (2017) 550 [arXiv:1702.00766] [INSPIRE].

  10. [10]

    LHCb collaboration, Prompt charm production in pp collisions at \( \sqrt{s} \) = 7 TeV, Nucl. Phys.B 871 (2013) 1 [arXiv:1302.2864] [INSPIRE].

  11. [11]

    LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2016) 159 [Erratum JHEP09 (2016) 013] [arXiv:1510.01707] [INSPIRE].

  12. [12]

    LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s} \) = 5 TeV, JHEP06 (2017) 147 [arXiv:1610.02230] [INSPIRE].

  13. [13]

    M. Cacciari, M. Greco and P. Nason, The p Tspectrum in heavy flavor hadroproduction, JHEP05 (1998) 007 [hep-ph/9803400] [INSPIRE].

  14. [14]

    M. Cacciari, S. Frixione and P. Nason, The p Tspectrum in heavy flavor photoproduction, JHEP03 (2001) 006 [hep-ph/0102134] [INSPIRE].

  15. [15]

    M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason and G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC, JHEP10 (2012) 137 [arXiv:1205.6344] [INSPIRE].

  16. [16]

    B.A. Kniehl, G. Kramer, I. Schienbein and H. Spiesberger, Inclusive Charmed-Meson Production at the CERN LHC, Eur. Phys. J.C 72 (2012) 2082 [arXiv:1202.0439] [INSPIRE].

  17. [17]

    R. Maciula and A. Szczurek, Open charm production at the LHC: k t-factorization approach, Phys. Rev.D 87 (2013) 094022 [arXiv:1301.3033] [INSPIRE].

  18. [18]

    UA1 collaboration, A Study of the D content of jets at the CERN p \( \overline{p} \)collider, Phys. Lett.B 244 (1990) 566 [INSPIRE].

  19. [19]

    CDF collaboration, A measurement of D production in jets from \( \overline{p} \)p collisions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev. Lett.64 (1990) 348 [INSPIRE].

  20. [20]

    CDF collaboration, Heavy flavor properties of jets produced in p \( \overline{p} \)interactions at \( \sqrt{s} \) = 1.8 TeV, Phys. Rev.D 69 (2004) 072004 [hep-ex/0311051] [INSPIRE].

  21. [21]

    STAR collaboration, Measurement of DMesons in Jets from p + p Collisions at \( \sqrt{s} \) = 200 GeV, Phys. Rev.D 79 (2009) 112006 [arXiv:0901.0740] [INSPIRE].

  22. [22]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  23. [23]

    PHENIX collaboration, Correlations of μμ, eμ and ee pairs in p + p collisions at \( \sqrt{s} \) = 200 GeV and implications for c \( \overline{c} \)and b \( \overline{b} \)production mechanisms, submittedto Phys. Rev. Lett. (2018), arXiv:1805.04075 [INSPIRE].

  24. [24]

    CMS collaboration, Measurement of B \( \overline{B} \)Angular Correlations based on Secondary Vertex Reconstruction at \( \sqrt{s} \) = 7 TeV, JHEP03 (2011) 136 [arXiv:1102.3194] [INSPIRE].

  25. [25]

    ATLAS collaboration, Measurement of D ∗±meson production in jets from pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev.D 85 (2012) 052005 [arXiv:1112.4432] [INSPIRE].

  26. [26]

    G. Corcella et al., HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP01 (2001) 010 [hep-ph/0011363] [INSPIRE].

  27. [27]

    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].

  28. [28]

    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].

  29. [29]

    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  31. [31]

    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP04 (2011) 081 [arXiv:1012.3380] [INSPIRE].

  32. [32]

    R.S. Thorne and R.G. Roberts, A Variable number flavor scheme for charged current heavy flavor structure functions, Eur. Phys. J.C 19 (2001) 339 [hep-ph/0010344] [INSPIRE].

  33. [33]

    D.P. Anderle, T. Kaufmann, M. Stratmann, F. Ringer and I. Vitev, Using hadron-in-jet data in a global analysis of D fragmentation functions, Phys. Rev.D 96 (2017) 034028 [arXiv:1706.09857] [INSPIRE].

  34. [34]

    H.-M. Chang, M. Procura, J. Thaler and W.J. Waalewijn, Calculating Track-Based Observables for the LHC, Phys. Rev. Lett.111 (2013) 102002 [arXiv:1303.6637] [INSPIRE].

  35. [35]

    ALICE collaboration, Suppression of high transverse momentum D mesons in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP09 (2012) 112 [arXiv:1203.2160] [INSPIRE].

  36. [36]

    ALICE collaboration, Centrality dependence of high-p TD meson suppression in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP11 (2015) 205 [Addendum JHEP06 (2017) 032] [arXiv:1506.06604] [INSPIRE].

  37. [37]

    ALICE collaboration, Transverse momentum dependence of D-meson production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP03 (2016) 081 [arXiv:1509.06888] [INSPIRE].

  38. [38]

    CMS collaboration, Nuclear modification factor of D 0mesons in PbPb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett.B 782 (2018) 474 [arXiv:1708.04962] [INSPIRE].

  39. [39]

    L. Asquith et al., Jet Substructure at the Large Hadron Collider: Experimental Review, arXiv:1803.06991 [INSPIRE].

  40. [40]

    CMS collaboration, Measurement of the Splitting Function in pp and Pb-Pb Collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett.120 (2018) 142302 [arXiv:1708.09429] [INSPIRE].

  41. [41]

    H.A. Andrews et al., Novel tools and observables for jet physics in heavy-ion collisions, arXiv:1808.03689 [INSPIRE].

  42. [42]

    ALICE collaboration, Medium modification of the shape of small-radius jets in central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP10 (2018) 139 [arXiv:1807.06854] [INSPIRE].

  43. [43]

    CMS collaboration, Measurement of the groomed jet mass in PbPb and pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP10 (2018) 161 [arXiv:1805.05145] [INSPIRE].

  44. [44]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST3 S08002 [INSPIRE].

  45. [45]

    ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys.A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  46. [46]

    ALICE collaboration, Determination of the event collision time with the ALICE detector at the LHC, Eur. Phys. J. Plus132 (2017) 99 [arXiv:1610.03055] [INSPIRE].

  47. [47]

    ALICE collaboration, Measurement of prompt D-meson production in pP b collisions at \( \sqrt{s_{\mathrm{NN}}} \)= 5.02 TeV, Phys. Rev. Lett.113 (2014) 232301 [arXiv:1405.3452] [INSPIRE].

  48. [48]

    ALICE collaboration, Measurement of inelastic, single- and double-diffraction cross sections in proton-proton collisions at the LHC with ALICE, Eur. Phys. J.C 73 (2013) 2456 [arXiv:1208.4968] [INSPIRE].

  49. [49]

    P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes, Phys. Rev.D 82 (2010) 074018 [arXiv:1005.3457] [INSPIRE].

  50. [50]

    R. Brun, R. Hagelberg, M. Hansroul and J.C. Lassalle, Simulation program for particle physics experiments, GEANT: user guide and reference manual, CERN-DD-78-2 (1978).

  51. [51]

    Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  52. [52]

    M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. [53]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  54. [54]

    D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152 [INSPIRE].

  55. [55]

    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J.C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

  56. [56]

    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev.D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

  57. [57]

    ALICE collaboration, Charged jet cross sections and properties in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev.D 91 (2015) 112012 [arXiv:1411.4969] [INSPIRE].

  58. [58]

    G. D’Agostini, A Multidimensional unfolding method based on Bayestheorem, Nucl. Instrum. Meth.A 362 (1995) 487 [INSPIRE].

  59. [59]

    ALICE collaboration, Measurement of pion, kaon and proton production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J.C 75 (2015) 226 [arXiv:1504.00024] [INSPIRE].

  60. [60]

    ALICE collaboration, Charged jet cross section and fragmentation in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev.D 99 (2019) 012016 [arXiv:1809.03232] [INSPIRE].

  61. [61]

    A. Hocker and V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. Meth.A 372 (1996) 469 [hep-ph/9509307] [INSPIRE].

  62. [62]

    T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  63. [63]

    P.Z. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J.C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].

  64. [64]

    M. Bahr et al., HERWIG++ Physics and Manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].

  65. [65]

    J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  66. [66]

    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J.C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

  67. [67]

    S. Frixione, G. Ridolfi and P. Nason, A Positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP09 (2007) 126 [arXiv:0707.3088] [INSPIRE].

  68. [68]

    ATLAS collaboration, Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector, Eur. Phys. J.C 71 (2011) 1795 [arXiv:1109.5816] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors