Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

High precision determination of αs from a global fit of jet rates

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 August 2019
  • volume 2019, Article number: 129 (2019)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
High precision determination of αs from a global fit of jet rates
Download PDF
  • Andrii Verbytskyi1,
  • Andrea Banfi2,
  • Adam Kardos3,
  • Pier Francesco Monni4,
  • Stefan Kluth1,
  • Gábor Somogyi5,
  • Zoltán Szőr6,
  • Zoltán Trócsányi5,7,
  • Zoltán Tulipánt5 &
  • …
  • Giulia Zanderighi1 
  • 294 Accesses

  • 8 Citations

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We present state-of-the-art extractions of the strong coupling based on N3LO+NNLL accurate predictions for the two-jet rate in the Durham clustering algorithm at e+e− collisions, as well as a simultaneous fit of the two- and three-jet rates taking into account correlations between the two observables. The fits are performed on a large range of data sets collected at the LEP and PETRA colliders, with energies spanning from 35 GeV to 207 GeV. Owing to the high accuracy of the predictions used, the perturbative uncertainty is considerably smaller than that due to hadronization. Our best determination at the Z mass is αs (MZ) = 0.11881 ± 0.00063(exp.) ± 0.00101(hadr.) ± 0.00045(ren.) ± 0.00034(res.), which is in agreement with the latest world average and has a comparable total uncertainty.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. H. Fritzsch, M. Gell-Mann and H. Leutwyler, Advantages of the color octet gluon picture, Phys. Lett.47B (1973) 365 [INSPIRE].

  2. D.J. Gross and F. Wilczek, Ultraviolet behavior of nonabelian gauge theories, Phys. Rev. Lett.30 (1973) 1343 [INSPIRE].

    Article  ADS  Google Scholar 

  3. H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett.30 (1973) 1346 [INSPIRE].

    Article  ADS  Google Scholar 

  4. D.J. Gross and F. Wilczek, Asymptotically free gauge theories — I, Phys. Rev.D 8 (1973) 3633 [INSPIRE].

    ADS  Google Scholar 

  5. Particle Data Group collaboration, Review of particle physics, Chin. Phys.C 40 (2016) 100001 [INSPIRE].

  6. Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved contributions in QCD hard processes, Nucl. Phys.B 469 (1996) 93 [hep-ph/9512336] [INSPIRE].

  7. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, NNLO corrections to event shapes in e +e −annihilation, JHEP12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and G. Heinrich, Jet rates in electron-positron annihilation at O(\( {\alpha}_s^3 \)) in QCD, Phys. Rev. Lett.100 (2008) 172001 [arXiv:0802.0813] [INSPIRE].

  9. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett.101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

  10. S. Weinzierl, Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP06 (2009) 041 [arXiv:0904.1077] [INSPIRE].

    Article  ADS  Google Scholar 

  11. V. Del Duca et al., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev.D 94 (2016) 074019 [arXiv:1606.03453] [INSPIRE].

  12. S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(\( {\alpha}_s^3 \))-corrections to σ tot(e +e − → hadrons) and Γ(τ − → ν τ + hadrons) in QCD, Phys. Lett.B 259 (1991) 144 [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Becher and M.D. Schwartz, A precise determination of αsfrom LEP thrust data using effective field theory, JHEP07 (2008) 034 [arXiv:0803.0342] [INSPIRE].

    Article  ADS  Google Scholar 

  14. R. Abbate et al., Thrust at N 3LL with power corrections and a precision global fit for αs(m Z ), Phys. Rev.D 83 (2011) 074021 [arXiv:1006.3080] [INSPIRE].

  15. P.F. Monni, T. Gehrmann and G. Luisoni, Two-loop soft corrections and resummation of the thrust distribution in the dijet region, JHEP08 (2011) 010 [arXiv:1105.4560] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Becher and G. Bell, NNLL resummation for jet broadening, JHEP11 (2012) 126 [arXiv:1210.0580] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at N 3LL’ including power corrections, Phys. Rev.D 91 (2015) 094017 [arXiv:1411.6633] [INSPIRE].

  18. D. de Florian and M. Grazzini, The back-to-back region in e +e −energy-energy correlation, Nucl. Phys.B 704 (2005) 387 [hep-ph/0407241] [INSPIRE].

  19. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation of event-shape distributions in e +e −annihilation, JHEP05 (2015) 102 [arXiv:1412.2126] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, The two-jet rate in e +e −at next-to-next-to-leading-logarithmic order, Phys. Rev. Lett.117 (2016) 172001 [arXiv:1607.03111] [INSPIRE].

  21. Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron annihilation at NNLL + NNLO accuracy, Eur. Phys. J.C 77 (2017) 749 [arXiv:1708.04093] [INSPIRE].

    Article  ADS  Google Scholar 

  22. I. Moult and H.X. Zhu, Simplicity from recoil: the three-loop soft function and factorization for the energy-energy correlation, JHEP08 (2018) 160 [arXiv:1801.02627] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Banfi, B.K. El-Menoufi and P.F. Monni, The Sudakov radiator for jet observables and the soft physical coupling, JHEP01 (2019) 083 [arXiv:1807.11487] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Bell, A. Hornig, C. Lee and J. Talbert, e +e −angularity distributions at NNLL ′accuracy, JHEP01 (2019) 147 [arXiv:1808.07867] [INSPIRE].

  25. T. Gehrmann, G. Luisoni and P.F. Monni, Power corrections in the dispersive model for a determination of the strong coupling constant from the thrust distribution, Eur. Phys. J.C 73 (2013) 2265 [arXiv:1210.6945] [INSPIRE].

  26. A. Kardos et al., Precise determination of αS (M Z ) from a global fit of energy-energy correlation to NNLO+NNLL predictions, Eur. Phys. J.C 78 (2018) 498 [arXiv:1804.09146] [INSPIRE].

  27. S. Catani et al., New clustering algorithm for multi-jet cross-sections in e +e −annihilation, Phys. Lett.B 269 (1991) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Somogyi, Z. Trócsányi and V. Del Duca, A subtraction scheme for computing QCD jet cross sections at NNLO: Regularization of doubly-real emissions, JHEP01 (2007) 070 [hep-ph/0609042] [INSPIRE].

  29. G. Somogyi and Z. Trócsányi, A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP01 (2007) 052 [hep-ph/0609043] [INSPIRE].

  30. A. Kardos, G. Somogyi and Z. Trócsányi, Jet cross sections with CoLoRFul NNLO, PoS(LL2016) 021.

  31. A. Banfi, G.P. Salam and G. Zanderighi, Semi-numerical resummation of event shapes, JHEP01 (2002) 018 [hep-ph/0112156] [INSPIRE].

  32. S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in e +e −event shape distributions, Nucl. Phys.B 407 (1993) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Nason and C. Oleari, Next-to-leading order corrections to momentum correlations in Z 0 →b \( \overline{b} \), Phys. Lett.B 407(1997) 57 [hep-ph/9705295] [INSPIRE].

  34. F. Krauss and G. Rodrigo, Resummed jet rates for e +e −annihilation into massive quarks, Phys. Lett.B 576 (2003) 135 [hep-ph/0303038] [INSPIRE].

  35. K.G. Chetyrkin, R.V. Harlander and J.H. Kuhn, Quartic mass corrections to R hadat \( \mathcal{O} \)(\( {\alpha}_s^3 \)), Nucl. Phys.B 586 (2000) 56 [Erratum ibid.B 634 (2002) 413] [hep-ph/0005139] [INSPIRE].

  36. P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e +e −collisions, Nucl. Phys.B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].

  37. OPAL collaboration, Test of the flavor independence of αsusing next-to-leading order calculations for heavy quarks, Eur. Phys. J.C 11 (1999) 643 [hep-ex/9904013] [INSPIRE].

  38. K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun.133 (2000) 43 [hep-ph/0004189] [INSPIRE].

  39. Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].

  40. ALEPH collaboration, Properties of hadronic Z decays and test of QCD generators, Z. Phys.C 55 (1992) 209 [INSPIRE].

  41. OPAL collaboration, QCD studies with e +e −annihilation data at 161 GeV, Z. Phys.C 75 (1997) 193 [INSPIRE].

  42. OPAL collaboration, QCD studies with e +e −annihilation data at 130 GeV and 136 GeV, Z. Phys.C 72 (1996) 191 [INSPIRE].

  43. JADE, OPAL collaboration, QCD analyses and determinations of αsin e +e −annihilation at energies between 35 GeV and 189 GeV, Eur. Phys. J.C 17 (2000) 19 [hep-ex/0001055] [INSPIRE].

  44. OPAL collaboration, A global determination of α s(M (Z)) at LEP, Z. Phys.C 55 (1992) 1 [INSPIRE].

  45. JADE collaboration, Measurement of the strong coupling αSfrom the three-jet rate in e +e −-annihilation using JADE data, Eur. Phys. J.C 73 (2013) 2332 [arXiv:1205.3714] [INSPIRE].

  46. L3 collaboration, Studies of hadronic event structure in e +e −annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept.399 (2004) 71 [hep-ex/0406049] [INSPIRE].

  47. DELPHI collaboration, Measurement of event shape and inclusive distributions at \( \sqrt{s} \) = 130 GeV and 136GeV,Z. Phys.C 73(1997) 229 [INSPIRE].

  48. ALEPH collaboration, Studies of QCD at e +e −centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J.C 35 (2004) 457 [INSPIRE].

  49. OPAL collaboration, A study of the recombination scheme dependence of jet production rates and of α s(m(Z 0)) in hadronic Z 0decays, Z. Phys.C 49 (1991) 375 [INSPIRE].

  50. L3 collaboration, QCD studies and determination of α sin e +e −collisions at \( \sqrt{s} \) = 161 GeV and 172 GeV, Phys. Lett.B 404 (1997) 390 [INSPIRE].

  51. A. Verbytskyi, Studies of correlations between measurements of jet observables, 2017 JINST12 P04013 [arXiv:1609.06898] [INSPIRE].

  52. A. Verbytskyi, Measurements of Durham, anti-k tand SIScone jet rates at LEP with the OPAL detector, Nucl. Part. Phys. Proc.294-296 (2018) 13.

  53. J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].

  54. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

  55. E. Bothmann et al., Event generation with SHERPA 2.2, arXiv:1905.09127 [INSPIRE].

  56. S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP08 (2013) 114 [arXiv:1211.5467] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Alwall et al., MadGraph 5: going beyond, JHEP06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

  58. F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with Open Loops, Phys. Rev. Lett.108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

  59. B.R. Webber, A QCD model for jet fragmentation including soft gluon interference, Nucl. Phys.B 238 (1984) 492 [INSPIRE].

    Article  ADS  Google Scholar 

  60. B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string dynamics, Phys. Rept.97 (1983) 31 [INSPIRE].

    Article  ADS  Google Scholar 

  61. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    Article  ADS  Google Scholar 

  62. L. Lönnblad, ThePEG, PYTHIA7, HERWIG++ and Ariadne, Nucl. Instrum. Meth.A 559 (2006) 246 [INSPIRE].

    Article  ADS  Google Scholar 

  63. D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth.A 462 (2001) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  64. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP02 (2002) 044 [hep-ph/0109036] [INSPIRE].

  65. C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP08 (2006) 062 [hep-ph/0607057] [INSPIRE].

  66. J.-C. Winter, F. Krauss and G. Soff, A modified cluster hadronization model, Eur. Phys. J.C 36 (2004) 381 [hep-ph/0311085] [INSPIRE].

  67. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

  68. G. Dissertori et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e +e −annihilations, JHEP02 (2008) 040 [arXiv:0712.0327] [INSPIRE].

  69. F. James and M. Roos, Minuit: a system for function minimization and analysis of the parameter errors and correlations, Comput. Phys. Commun.10 (1975) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  70. PAL collaboration, Determination of αs using OPAL hadronic event shapes at \( \sqrt{s} \) = 91-209 GeV and resummed NNLO calculations, Eur. Phys. J.C 71(2011) 1733 [arXiv:1101.1470] [INSPIRE].

  71. R.W.L. Jones et al., Theoretical uncertainties on αsfrom event shape variables in e +e −annihilations, JHEP12 (2003) 007 [hep-ph/0312016] [INSPIRE].

  72. G. Dissertori et al., Determination of the strong coupling constant using matched NNLO+NLLA predictions for hadronic event shapes in e +e −annihilations, JHEP08 (2009) 036 [arXiv:0906.3436] [INSPIRE].

  73. S. Alekhin et al., HERAFitter, Eur. Phys. J.C 75 (2015) 304 [arXiv:1410.4412] [INSPIRE].

  74. G. Dissertori et al., Precise determination of the strong coupling constant at NNLO in QCD from the three-jet rate in electron-positron annihilation at LEP, Phys. Rev. Lett.104 (2010) 072002 [arXiv:0910.4283] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Physik, D-80805, Munich, Germany

    Andrii Verbytskyi, Stefan Kluth & Giulia Zanderighi

  2. University of Sussex, Brighton, BN1 9RH, U.K.

    Andrea Banfi

  3. University of Debrecen, Box 105, Debrecen, PO, 4010, Hungary

    Adam Kardos

  4. CERN, Theory Department, CH-1211, Geneva 23, Switzerland

    Pier Francesco Monni

  5. MTA-DE Particle Physics Research Group, University of Debrecen, Box 105, Debrecen, PO, 4010, Hungary

    Gábor Somogyi, Zoltán Trócsányi & Zoltán Tulipánt

  6. PRISMA Cluster of Excellence, Institut für Physik, Universität Mainz, D-55099, Mainz, Germany

    Zoltán Szőr

  7. Institute for Theoretical Physics, Eötvös Loránd University, Pázmány Péter 1/A, Budapest, H-1117, Hungary

    Zoltán Trócsányi

Authors
  1. Andrii Verbytskyi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrea Banfi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Adam Kardos
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Pier Francesco Monni
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Stefan Kluth
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Gábor Somogyi
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Zoltán Szőr
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Zoltán Trócsányi
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Zoltán Tulipánt
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Giulia Zanderighi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrii Verbytskyi.

Additional information

ArXiv ePrint: 1902.08158

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbytskyi, A., Banfi, A., Kardos, A. et al. High precision determination of αs from a global fit of jet rates. J. High Energ. Phys. 2019, 129 (2019). https://doi.org/10.1007/JHEP08(2019)129

Download citation

  • Received: 07 March 2019

  • Revised: 11 June 2019

  • Accepted: 29 July 2019

  • Published: 23 August 2019

  • DOI: https://doi.org/10.1007/JHEP08(2019)129

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Jets
  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature