Advertisement

Master Integrals for the two-loop, non-planar QCD corrections to top-quark pair production in the quark-annihilation channel

  • Matteo Becchetti
  • Roberto BoncianiEmail author
  • Valerio Casconi
  • Andrea Ferroglia
  • Simone Lavacca
  • Andreas von Manteuffel
Open Access
Regular Article - Theoretical Physics
  • 21 Downloads

Abstract

We present the analytic calculation of the Master Integrals for the twoloop, non-planar topologies that enter the calculation of the amplitude for top-quark pair hadroproduction in the quark-annihilation channel. Using the method of differential equations, we expand the integrals in powers of the dimensional regulator ϵ and determine the expansion coefficients in terms of generalized harmonic polylogarithms of two dimensionless variables through to weight four.

Keywords

Perturbative QCD Heavy Quark Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

References

  1. [1]
    P. Bärnreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to q \( \overline{q} \) → t \( \overline{t} \) + X, Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: thequark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadroncolliders through O \( \left({\alpha}_S^4\right) \), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Czakon, P. Fiedler and A. Mitov, Resolving the Tevatron top quark forward-backwardasymmetry puzzle: fully differential next-to-next-to-leading-order calculation, Phys. Rev. Lett. 115 (2015) 052001 [arXiv:1411.3007] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett. 116 (2016) 082003 [arXiv:1511.00549] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M. Czakon, D. Heymes and A. Mitov, Dynamical scales for multi-TeV top-pair production at the LHC, JHEP 04 (2017) 071 [arXiv:1606.03350] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Czakon, P. Fiedler, D. Heymes and A. Mitov, NNLO QCD predictions for fully-differential top-quark pair production at the Tevatron, JHEP 05 (2016) 034 [arXiv:1601.05375] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Catani et al., Top-quark pair hadroproduction at next-to-next-to-leading order in QCD, Phys. Rev. D 99 (2019) 051501 [arXiv:1901.04005] [INSPIRE].
  10. [10]
    M. Czakon et al., Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP 10 (2017) 186 [arXiv:1705.04105] [INSPIRE].
  11. [11]
    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to t \( \overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].
  12. [12]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp → t \( \overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Hadronic top-quark pair production in association with two jets at Next-to-Leading Order QCD, Phys. Rev. D 84 (2011) 114017 [arXiv:1108.2851] [INSPIRE].
  14. [14]
    K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production in association with one hard jet at hadron colliders, Nucl. Phys. B 840 (2010) 129 [arXiv:1004.3284] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    G. Abelof, A. Gehrmann-De Ridder, P. Maierhofer and S. Pozzorini, NNLO QCD subtraction for top-antitop production in the q \( \overline{q} \) channel, JHEP 08 (2014) 035 [arXiv:1404.6493] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G. Abelof and A. Gehrmann-De Ridder, Light fermionic NNLO QCD corrections to top-antitop production in the quark-antiquark channel, JHEP 12 (2014) 076 [arXiv:1409.3148] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    G. Abelof, A. Gehrmann-De Ridder and I. Majer, Top quark pair production at NNLO in the quark-antiquark channel, JHEP 12 (2015) 074 [arXiv:1506.04037] [INSPIRE].ADSGoogle Scholar
  18. [18]
    R. Bonciani et al., The q T subtraction method for top quark production at hadron colliders, Eur. Phys. J. C 75 (2015) 581 [arXiv:1508.03585] [INSPIRE].
  19. [19]
    R. Angeles-Martinez, M. Czakon and S. Sapeta, NNLO soft function for top quark pair production at small transverse momentum, JHEP 10 (2018) 201 [arXiv:1809.01459] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    J.G. Korner, Z. Merebashvili and M. Rogal, NNLO O \( \left({\alpha}_s^4\right) \) results for heavy quark pair production in quark-antiquark collisions: The One-loop squared contributions, Phys. Rev. D 77 (2008) 094011 [Erratum ibid. D 85 (2012) 119904] [arXiv:0802.0106] [INSPIRE].ADSGoogle Scholar
  21. [21]
    B. Kniehl, Z. Merebashvili, J.G. Korner and M. Rogal, Heavy quark pair production in gluon fusion at next-to-next-to-leading O \( \Big({\alpha_s^4}^{\Big)} \) order: One-loop squared contributions, Phys. Rev. D 78 (2008) 094013 [arXiv:0809.3980] [INSPIRE].
  22. [22]
    C. Anastasiou and S.M. Aybat, The one-loop gluon amplitude for heavy-quark production at NNLO, Phys. Rev. D 78 (2008) 114006 [arXiv:0809.1355] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Czakon, Tops from light quarks: full mass dependence at two-loops in QCD, Phys. Lett. B 664 (2008) 307 [arXiv:0803.1400] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE]ADSCrossRefGoogle Scholar
  26. [26]
    A. Goncharov, Polylogarithms in arithmetic and geometry, Proc. Int. Congr. Math. 1,2 (1995) 374.zbMATHGoogle Scholar
  27. [27]
    A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059.
  28. [28]
    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
  29. [29]
    J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
  30. [30]
    R. Bonciani et al., Two-loop fermionic corrections to heavy-quark pair production: the quark-antiquark channel, JHEP 07 (2008) 129 [arXiv:0806.2301] [INSPIRE].
  31. [31]
    R. Bonciani, A. Ferroglia, T. Gehrmann and C. Studerus, Two-loop planar corrections to heavy-quark pair production in the quark-antiquark channel, JHEP 08 (2009) 067 [arXiv:0906.3671] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    P. Bärnreuther, M. Czakon and P. Fiedler, Virtual amplitudes and threshold behaviour of hadronic top-quark pair-production cross sections, JHEP 02 (2014) 078 [arXiv:1312.6279] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    R. Bonciani et al., Two-loop leading color corrections to heavy-quark pair production in the gluon fusion channel, JHEP 01 (2011) 102 [arXiv:1011.6661] [INSPIRE].
  34. [34]
    A. von Manteuffel and C. Studerus, Massive planar and non-planar double box integrals for light N f contributions to gg → tt, JHEP 10 (2013) 037 [arXiv:1306.3504] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    R. Bonciani et al., Light-quark two-loop corrections to heavy-quark pair production in the gluon fusion channel, JHEP 12 (2013) 038 [arXiv:1309.4450] [INSPIRE].
  36. [36]
    L.-B. Chen and J. Wang, Master integrals of a planar double-box family for top-quark pair production, Phys. Lett. B 792 (2019) 50 [arXiv:1903.04320] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].
  38. [38]
    L. Adams, E. Chaubey and S. Weinzierl, Planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularization parameter, Phys. Rev. Lett. 121 (2018) 142001 [arXiv:1804.11144] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, JHEP 10 (2018) 206 [arXiv:1806.04981] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Bonciani, P. Mastrolia and E. Remiddi, Vertex diagrams for the QED form-factors at the two loop level, Nucl. Phys. B 661 (2003) 289 [Erratum ibid. B 702 (2004) 359] [hep-ph/0301170] [INSPIRE].
  41. [41]
    R. Bonciani, P. Mastrolia and E. Remiddi, Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry, Nucl. Phys. B 690 (2004) 138 [hep-ph/0311145] [INSPIRE].
  42. [42]
    R. Bonciani and A. Ferroglia, Two-loop QCD corrections to the heavy-to-light quark decay, JHEP 11 (2008) 065 [arXiv:0809.4687] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    C. Bogner et al., Loopedia, a database for loop integrals, Comput. Phys. Commun. 225 (2018) 1 [arXiv:1709.01266] [INSPIRE].
  44. [44]
    C.M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni, A new approach to evaluate the leading hadronic corrections to the muon g-2, Phys. Lett. B 746 (2015) 325 [arXiv:1504.02228] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    G. Abbiendi et al., Measuring the leading hadronic contribution to the muon g − 2 via μe scattering, Eur. Phys. J. C 77 (2017) 139 [arXiv:1609.08987] [INSPIRE].
  46. [46]
    P. Mastrolia, M. Passera, A. Primo and U. Schubert, Master integrals for the NNLO virtual corrections to μe scattering in QED: the planar graphs, JHEP 11 (2017) 198 [arXiv:1709.07435] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    S. Di Vita et al., Master integrals for the NNLO virtual corrections to μe scattering in QED: the non-planar graphs, JHEP 09 (2018) 016 [arXiv:1806.08241] [INSPIRE].
  48. [48]
    R.N. Lee and K.T. Mingulov, Master integrals for two-loop C-odd contribution to e + e + process, arXiv:1901.04441 [INSPIRE].
  49. [49]
    C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order perturbative calculations, JHEP 07 (2004) 046 [hep-ph/0404258] [INSPIRE].
  50. [50]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  51. [51]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  52. [52]
    P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — A Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].
  54. [54]
    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  56. [56]
    C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].
  58. [58]
    F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. 100B (1981) 65 [INSPIRE].
  59. [59]
    K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].
  61. [61]
    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
  62. [62]
    A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].
  64. [64]
    M. Argeri and P. Mastrolia, Feynman diagrams and differential equations, Int. J. Mod. Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  65. [65]
    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].
  68. [68]
    S. Di Vita, P. Mastrolia, U. Schubert and V. Yundin, Three-loop master integrals for ladder-box diagrams with one massive leg, JHEP 09 (2014) 148 [arXiv:1408.3107] [INSPIRE].
  69. [69]
    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for q \( \overline{q} \) → V V, JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].
  71. [71]
    A. von Manteuffel, R.M. Schabinger and H.X. Zhu, The two-loop soft function for heavy quark pair production at future linear colliders, Phys. Rev. D 92 (2015) 045034 [arXiv:1408.5134] [INSPIRE].
  72. [72]
    R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    L. Adams, E. Chaubey and S. Weinzierl, Simplifying differential equations for multiscale Feynman integrals beyond multiple polylogarithms, Phys. Rev. Lett. 118 (2017) 141602 [arXiv:1702.04279] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    J. Ablinger et al., Algorithms to solve coupled systems of differential equations in terms of power series, PoS LL2016 (2016) 005 [arXiv:1608.05376] [INSPIRE].
  75. [75]
    C. Meyer, Transforming differential equations of multi-loop Feynman integrals into canonical form, JHEP 04 (2017) 006 [arXiv:1611.01087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  76. [76]
    A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: an algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203 [arXiv:1612.04252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329 [arXiv:1701.04269] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  78. [78]
    S. Di Vita et al., Master integrals for the NNLO virtual corrections to q \( \overline{q} \) → t \( \overline{t} \) scattering in QCD: the non-planar graphs, JHEP 06 (2019) 117 [arXiv:1904.10964] [INSPIRE].
  79. [79]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].
  80. [80]
    C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Becchetti and R. Bonciani, Two-loop master integrals for the planar QCD massive corrections to di-photon and di-jet hadro-production, JHEP 01 (2018) 048 [arXiv:1712.02537] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    K.T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831.MathSciNetCrossRefzbMATHGoogle Scholar
  83. [83]
    L. Tancredi, private communication (2017).Google Scholar
  84. [84]
    T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].
  85. [85]
    J. Carter and G. Heinrich, SecDec: a general program for sector decomposition, Comput. Phys. Commun. 182 (2011) 1566 [arXiv:1011.5493] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  86. [86]
    S. Borowka, J. Carter and G. Heinrich, Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0, Comput. Phys. Commun. 184 (2013) 396 [arXiv:1204.4152] [INSPIRE].
  87. [87]
    S. Borowka et al., SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [arXiv:1502.06595] [INSPIRE].
  88. [88]
    S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
  89. [89]
    A.V. Smirnov and M.N. Tentyukov, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun. 180 (2009) 735 [arXiv:0807.4129] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  90. [90]
    A.V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun. 185 (2014) 2090 [arXiv:1312.3186] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  91. [91]
    A.V. Smirnov, FIESTA4: Optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  92. [92]
    C. W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, math.CS/0004015.
  93. [93]
    A. von Manteuffel, E. Panzer and R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, JHEP 02 (2015) 120 [arXiv:1411.7392] [INSPIRE].
  94. [94]
    E. Panzer, On hyperlogarithms and Feynman integrals with divergences and many scales, JHEP 03 (2014) 071 [arXiv:1401.4361] [INSPIRE].
  95. [95]
    A. von Manteuffel and R.M. Schabinger, Numerical multi-loop calculations via finite integrals and one-mass EW-QCD Drell-Yan master integrals, JHEP 04 (2017) 129 [arXiv:1701.06583] [INSPIRE].
  96. [96]
    J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Matteo Becchetti
    • 1
  • Roberto Bonciani
    • 2
    • 3
    Email author
  • Valerio Casconi
    • 2
    • 3
  • Andrea Ferroglia
    • 4
    • 5
  • Simone Lavacca
    • 2
    • 3
  • Andreas von Manteuffel
    • 6
  1. 1.Center for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Dipartimento di Fisica, Sapienza — Università di RomaRomeItaly
  3. 3.INFN — Sezione di RomaRomeItaly
  4. 4.Physics Department, New York City College of TechnologyThe City University of New YorkBrooklynU.S.A.
  5. 5.The Graduate School and University CenterThe City University of New YorkNew YorkU.S.A.
  6. 6.Department of Physics and AstronomyMichigan State UniversityEast LansingU.S.A.

Personalised recommendations