A. Bagchi and R. Gopakumar, Galilean Conformal Algebras and AdS/CFT, JHEP07 (2009) 037 [arXiv:0902.1385] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.H. Christensen, J. Hartong, N.A. Obers and B. Rollier, Torsional Newton-Cartan Geometry and Lifshitz Holography, Phys. Rev.D 89 (2014) 061901 [arXiv:1311.4794] [INSPIRE].
ADS
MATH
Google Scholar
D.T. Son, Newton-Cartan Geometry and the Quantum Hall Effect, arXiv:1306.0638 [INSPIRE].
M. Geracie, D.T. Son, C. Wu and S.-F. Wu, Spacetime Symmetries of the Quantum Hall Effect, Phys. Rev.D 91 (2015) 045030 [arXiv:1407.1252] [INSPIRE].
ADS
MathSciNet
Google Scholar
E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei Gravity, JHEP03 (2017) 165 [arXiv:1701.06156] [INSPIRE].
G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2 + 1 dimensions, JHEP11 (2009) 009 [arXiv:0907.2880] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett.116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].
ADS
Article
Google Scholar
J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev.D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].
ADS
Google Scholar
D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett.122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].
ADS
Article
Google Scholar
D. Hansen, J. Hartong and N.A. Obers, Gravity between Newton and Einstein, arXiv:1904.05706 [INSPIRE].
R. Andringa, E. Bergshoeff, J. Gomis and M. de Roo, ‘Stringy’ Newton-Cartan Gravity, Class. Quant. Grav.29 (2012) 235020 [arXiv:1206.5176] [INSPIRE].
J. Brugues, T. Curtright, J. Gomis and L. Mezincescu, Non-relativistic strings and branes as non-linear realizations of Galilei groups, Phys. Lett.B 594 (2004) 227 [hep-th/0404175] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP11 (2018) 133 [arXiv:1806.06071] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys.42 (2001) 3127 [hep-th/0009181] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
B. Julia and H. Nicolai, Null Killing vector dimensional reduction and Galilean geometrodynamics, Nucl. Phys.B 439 (1995) 291 [hep-th/9412002] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.A. Bergshoeff, K.T. Grosvenor, C. Simsek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP01 (2019) 178 [arXiv:1810.09387] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N. Ozdemir, M. Ozkan, O. Tunca and U. Zorba, Three-Dimensional Extended Newtonian (Super) Gravity, JHEP05 (2019) 130 [arXiv:1903.09377] [INSPIRE].
M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inönü-Wigner contraction, Prog. Theor. Phys.109 (2003) 853 [hep-th/0106114] [INSPIRE].
ADS
Article
Google Scholar
J.A. de Azcárraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super) algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys.B 662 (2003) 185 [hep-th/0212347] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.A. de Azcárraga, J.M. Izquierdo, M. Picón and O. Varela, Expansions of algebras and superalgebras and some applications, Int. J. Theor. Phys.46 (2007) 2738 [hep-th/0703017] [INSPIRE].
MathSciNet
Article
Google Scholar
F. Izaurieta, E. Rodriguez and P. Salgado, Expanding Lie (super) algebras through Abelian semigroups, J. Math. Phys.47 (2006) 123512 [hep-th/0606215] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.A. de Azcárraga and J.M. Izquierdo, (p, q) D = 3 Poincaré supergravities from Lie algebra expansions, Nucl. Phys. B 854 (2012) 276 [arXiv:1107.2569] [INSPIRE].
J.A. de Azcárraga, J.M. Izquierdo, J. Lukierski and M. Woronowicz, Generalizations of Maxwell (super) algebras by the expansion method, Nucl. Phys. B 869 (2013) 303 [arXiv:1210.1117] [INSPIRE].
P.K. Concha and E.K. Rodríguez, Maxwell Superalgebras and Abelian Semigroup Expansion, Nucl. Phys.B 886 (2014) 1128 [arXiv:1405.1334] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Avilés, E. Frodden, J. Gomis, D. Hidalgo and J. Zanelli, Non-Relativistic Maxwell Chern-Simons Gravity, JHEP05 (2018) 047 [arXiv:1802.08453] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J. Gomis and A. Kleinschmidt, On free Lie algebras and particles in electro-magnetic fields, JHEP07 (2017) 085 [arXiv:1705.05854] [INSPIRE].
J.M. Izquierdo, Lie algebra expansions and three-dimensional Galilean supergravity, talk given at the Spanish-Portuguese Relativity Meeting 2018 (EREP’18), Palencia, Spain, 4 September 2018.
J.A. de Azcárraga, D. Gútiez and J.M. Izquierdo, Extended D = 3 Bargmann supergravity from a Lie algebra expansion, arXiv:1904.12786 [INSPIRE].
T. Harmark, J. Hartong, L. Menculini, N.A. Obers and Z. Yan, Strings with Non-Relativistic Conformal Symmetry and Limits of the AdS/CFT Correspondence, JHEP11 (2018) 190 [arXiv:1810.05560] [INSPIRE].
E.A. Bergshoeff, J. Rosseel, C. Şimsek and Z. Yan, Spacetime Geometry and Nonrelativistic String Theory, in preparation.
D. Van den Bleeken, Torsional Newton-Cartan gravity from the large c expansion of general relativity, Class. Quant. Grav.34 (2017) 185004 [arXiv:1703.03459] [INSPIRE].
D. Van den Bleeken, Torsional Newton-Cartan gravity and strong gravitational fields, in proceedings of the 15th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories (MG15), Rome, Italy, 1-7 July 2018, arXiv:1903.10682 [INSPIRE].
P.D. Álvarez, J. Gomis, K. Kamimura and M.S. Plyushchay, (2 + 1) D Exotic Newton-Hooke Symmetry, Duality and Projective Phase, Annals Phys.322 (2007) 1556 [hep-th/0702014] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
O. Khasanov and S. Kuperstein, (In) finite extensions of algebras from their Inonu-Wigner contractions, J. Phys.A 44 (2011) 475202 [arXiv:1103.3447] [INSPIRE].
MathSciNet
Article
Google Scholar
M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg.31 (1979) 47 [INSPIRE].
MathSciNet
MATH
Google Scholar
E. Bergshoeff, D. Grumiller, S. Prohazka and J. Rosseel, Three-dimensional Spin-3 Theories Based on General Kinematical Algebras, JHEP01 (2017) 114 [arXiv:1612.02277] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar