Abstract
The worldline formalism is a useful scheme in quantum field theory which has also become a powerful tool for numerical computations. The key ingredient in this formalism is the first quantization of an auxiliary point-particle whose transition amplitudes correspond to the heat-kernel of the operator of quantum fluctuations of the field theory. However, to study a quantum field which is confined within some boundaries one needs to restrict the path integration domain of the auxiliary point-particle to a specific subset of worldlines enclosed by those boundaries. We show how to implement this restriction for the case of a scalar field confined to the D-dimensional ball under Dirichlet and Neumann boundary conditions, and compute the first few heat-kernel coefficients as a verification of our construction. We argue that this approach could admit different generalizations.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett.66 (1991) 1669 [INSPIRE].
M.J. Strassler, Field theory without Feynman diagrams: One loop effective actions, Nucl. Phys.B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
C. Schubert, Perturbative quantum field theory in the string inspired formalism, Phys. Rept.355 (2001) 73 [hep-th/0101036] [INSPIRE].
F. Bastianelli and A. Zirotti, Worldline formalism in a gravitational background, Nucl. Phys.B 642 (2002) 372 [hep-th/0205182] [INSPIRE].
F. Bastianelli, O. Corradini and A. Zirotti, Dimensional regularization for \( \mathcal{N} \)= 1 supersymmetric σ-models and the worldline formalism, Phys. Rev.D 67 (2003) 104009 [hep-th/0211134] [INSPIRE].
F. Bastianelli, P. Benincasa and S. Giombi, Worldline approach to vector and antisymmetric tensor fields, JHEP04 (2005) 010 [hep-th/0503155] [INSPIRE].
F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP11 (2008) 054 [arXiv:0810.0188] [INSPIRE].
O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP09 (2010) 113 [arXiv:1006.4452] [INSPIRE].
F. Bastianelli, R. Bonezzi, O. Corradini and E. Latini, Effective action for higher spin fields on (A)dS backgrounds, JHEP12 (2012) 113 [arXiv:1210.4649] [INSPIRE].
F. Bastianelli and P. van Nieuwenhuizen, Path integrals and anomalies in curved space, Cambridge University Press (2009).
H. Gies, K. Langfeld and L. Moyaerts, Casimir effect on the worldline, JHEP06 (2003) 018 [hep-th/0303264] [INSPIRE].
C.D. Fosco, F.C. Lombardo and F.D. Mazzitelli, Neumann Casimir effect: a singular boundary-interaction approach, Phys. Lett.B 690 (2010) 189 [arXiv:0912.0886] [INSPIRE].
M.S. Marinov, Path Integrals In Quantum Theory: An Outlook Of Basic Concepts, Phys. Rept.60 (1980) 1 [INSPIRE].
I. Sökmen, Exact path integral solution to the infinite square well, Phys. Lett.A 106 (1984) 212.
F. Bastianelli, O. Corradini and P.A.G. Pisani, Worldline approach to quantum field theories on flat manifolds with boundaries, JHEP02 (2007) 059 [hep-th/0612236] [INSPIRE].
F. Bastianelli, O. Corradini, P.A.G. Pisani and C. Schubert, Scalar heat kernel with boundary in the worldline formalism, JHEP10 (2008) 095 [arXiv:0809.0652] [INSPIRE].
P.B. Gilkey, Invariance Theory: the heat equation and the Atiyah-Singer index theorem, Studies in Advanced Mathematics, CRC-Press (1995).
D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept.388 (2003) 279 [hep-th/0306138] [INSPIRE].
J. De Boer, B. Peeters, K. Skenderis and P. Van Nieuwenhuizen, Loop calculations in quantum mechanical nonlinear σ-models, Nucl. Phys.B 446 (1995) 211 [hep-th/9504097] [INSPIRE].
J.P. Edwards and P. Mansfield, QED as the tensionless limit of the spinning string with contact interaction, Phys. Lett.B 746 (2015) 335 [arXiv:1409.4948] [INSPIRE].
J.P. Edwards and P. Mansfield, Delta-function Interactions for the Bosonic and Spinning Strings and the Generation of Abelian Gauge Theory, JHEP01 (2015) 127 [arXiv:1410.3288] [INSPIRE].
J.P. Edwards, Contact interactions between particle worldlines, JHEP01 (2016) 033 [arXiv:1506.08130] [INSPIRE].
K. Kirsten, Spectral functions in mathematics and physics, Chapman & Hall/CRC, Boca Raton FL U.S.A. (2001).
T.E. Clark, R. Menikoff and D.H. Sharp, Quantum Mechanics on the Half Line Using Path Integrals, Phys. Rev.D 22 (1980) 3012 [INSPIRE].
F. Bastianelli, O. Corradini and P.A.G. Pisani, Scalar field with Robin boundary conditions in the worldline formalism, J. Phys.A 41 (2008) 164010 [arXiv:0710.4026] [INSPIRE].
S.A.F. Vinas and P.A.G. Pisani, Semi-transparent Boundary Conditions in the Worldline Formalism, J. Phys.A 44 (2011) 295401 [arXiv:1012.2883] [INSPIRE].
M. Carreau, E. Farhi and S. Gutmann, The Functional Integral for a Free Particle in a Box, Phys. Rev.D 42 (1990) 1194 [INSPIRE].
M. Carreau, The Functional integral for a free particle on a half plane, J. Math. Phys.33 (1992) 4139 [hep-th/9208052] [INSPIRE].
M. Asorey, A. Ibort and G. Marmo, Global theory of quantum boundary conditions and topology change, Int. J. Mod. Phys.A 20 (2005) 1001 [hep-th/0403048] [INSPIRE].
M. Asorey, A. Ibort and G. Marmo, Path integrals and boundary conditions, in proceedings of 32nd International Meeting on Fundamental Physics (IMFP 2004), Alicante, Spain, 1-5 March 2004, quant-ph/0609023 [INSPIRE].
M. Asorey, J.M. Muñoz-Castaneda and J. Clemente-Gallardo, Boundary conditions: The path integral approach, J. Phys. Conf. Ser.87 (2007) 012004 [arXiv:0712.4353] [INSPIRE].
N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra and H. Weigel, Calculating vacuum energies in renormalizable quantum field theories: A New approach to the Casimir problem, Nucl. Phys.B 645 (2002) 49 [hep-th/0207120] [INSPIRE].
N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra and H. Weigel, Casimir energies in light of quantum field theory, Phys. Lett.B 572 (2003) 196 [hep-th/0207205] [INSPIRE].
N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, O. Schroeder and H. Weigel, The Dirichlet Casimir problem, Nucl. Phys.B 677 (2004) 379 [hep-th/0309130] [INSPIRE].
H. Gies and K. Langfeld, Quantum diffusion of magnetic fields in a numerical worldline approach, Nucl. Phys.B 613 (2001) 353 [hep-ph/0102185] [INSPIRE].
H. Gies and K. Klingmuller, Pair production in inhomogeneous fields, Phys. Rev.D 72 (2005) 065001 [hep-ph/0505099] [INSPIRE].
M. Schaden, Numerical and semiclassical analysis of some generaliz ed Casimir pistons, Phys. Rev.A 79 (2009) 052105 [arXiv:0810.1046] [INSPIRE].
M. Schaden, Irreducible Scalar Many-Body Casimir Energies: Theorems and Numerical Studies, Int. J. Mod. Phys. Conf. Ser.14 (2012) 501 [arXiv:1112.3274] [INSPIRE].
J.B. Mackrory, T. Bhattacharya and D.A. Steck, Worldline approach for numerical computation of electromagnetic Casimir energies: Scalar field coupled to magnetodielectric media, Phys. Rev.A 94 (2016) 042508 [arXiv:1606.00150] [INSPIRE].
H. Gies and K. Klingmuller, Casimir effect for curved geometries: PFA validity limits, Phys. Rev. Lett.96 (2006) 220401 [quant-ph/0601094] [INSPIRE].
H. Gies and K. Klingmuller, Worldline algorithms for Casimir configurations, Phys. Rev.D 74 (2006) 045002 [quant-ph/0605141] [INSPIRE].
M. Schafer, I. Huet and H. Gies, Energy-Momentum Tensors with Worldline Numerics, Int. J. Mod. Phys. Conf. Ser.14 (2012) 511 [arXiv:1112.0469] [INSPIRE].
M. Schafer, I. Huet and H. Gies, Worldline Numerics for Energy-Momentum Tensors in Casimir Geometries, J. Phys.A 49 (2016) 135402 [arXiv:1509.03509] [INSPIRE].
K. Aehlig, H. Dietert, T. Fischbacher and J. Gerhard, Casimir Forces via Worldline Numerics: Method Improvements and Potential Engineering Applications, arXiv:1110.5936 [INSPIRE].
D. Mazur and J.S. Heyl, Parallel Worldline Numerics: Implementation and Error Analysis, arXiv:1407.7486 [INSPIRE].
J.P. Edwards, U. Gerber, C. Schubert, M.A. Trejo and A. Weber, Integral transforms of the quantum mechanical path integral: hit function and path averaged potential, Phys. Rev.E 97 (2018) 042114 [arXiv:1709.04984] [INSPIRE].
J.P. Edwards, U. Gerber, C. Schubert, M.A. Trejo, T. Tsiftsi and A. Weber, Applications of the worldline Monte Carlo formalism in quantum mechanics, arXiv:1903.00536 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1905.00945
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Corradini, O., Edwards, J.P., Huet, I. et al. Worldline formalism for a confined scalar field. J. High Energ. Phys. 2019, 37 (2019). https://doi.org/10.1007/JHEP08(2019)037
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2019)037