Toy models of holographic duality between local Hamiltonians


Holographic quantum error correcting codes (HQECC) have been proposed as toy models for the AdS/CFT correspondence, and exhibit many of the features of the duality. HQECC give a mapping of states and observables. However, they do not map local bulk Hamiltonians to local Hamiltonians on the boundary. In this work, we combine HQECC with Hamiltonian simulation theory to construct a bulk-boundary mapping between local Hamiltonians, whilst retaining all the features of the HQECC duality. This allows us to construct a duality between models, encompassing the relationship between bulk and boundary energy scales and time dynamics.

It also allows us to construct a map in the reverse direction: from local boundary Hamiltonians to the corresponding local Hamiltonian in the bulk. Under this boundary-to-bulk mapping, the bulk geometry emerges as an approximate, low-energy, effective theory living in the code-space of an (approximate) HQECC on the boundary. At higher energy scales, this emergent bulk geometry is modified in a way that matches the toy models of black holes proposed previously for HQECC. Moreover, the duality on the level of dynamics shows how these toy-model black holes can form dynamically.

A preprint version of the article is available at ArXiv.


  1. [1]

    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    X.D. Ahmed Almheiri and D. Harlow, Bulk locality and quantum error correction in Ads/CFT, JHEP04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    B. Swingle, Entanglement renormalization and holography, Phys. Rev.D 46 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

  5. [5]

    B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].

  6. [6]

    Z. Yang, P. Hayden and X.L. Qi, Bidirectional holographic codes and sub-AdS locality, JHEP01 (2016) 175 [arXiv:1510.03784] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    P. Hayden et al., Holographic duality from random tensor networks, JHEP11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    A. Bhattacharyya, Z.S. Gao, L.Y. Hung and S.N. liu, Exploring the tensor networks/AdS correspondence, JHEP08 (2016) 086 [arXiv:1606.00621] [INSPIRE].

  9. [9]

    T.J. Osborne and D.E. Stiegemann, Dynamics for holographic codes, arXiv:1706.08823 [INSPIRE].

  10. [10]

    T. Cubitt, A. Montanaro and S. Piddock, Universal quantum Hamiltonians, Proce. Natl. Acad. Sci.115 (2018) 9497 [arXiv:1701.05182].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    M.P. Woods and A.M. Alhambra, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, arXiv:1902.07725 [INSPIRE].

  12. [12]

    P. Faist et al., Continuous symmetries and approximate quantum error correction, arXiv:1902.07714 [INSPIRE].

  13. [13]

    A.L.M. Headrick, V.E. Hubeny and M. Rangamani, Causality and holographic entanglement entropy, JHEP12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    K.G. Wilson, Renormalization group and critical phenomena. I: renormalization group and the Kadanoff scaling pictre, Phys. Rev.B 4 (1971) 3174.

  15. [15]

    K.G. Wilson, The renormalization group and critical phenomena. II: phase space cell analysis of critical behavior, Phys. Rev.B 4 (1971) 3184.

  16. [16]

    R. Oliveira and B. Terhal, The complexity of quantum spin systems on a two-dimensional square lattice, Quant. Inf. Comput.8 (2005) 0900 [quant-ph/0504050].

  17. [17]

    G. Gour and N.R. Wallach, All maximally entangled four-qubit states, J. Math. Phys.51 (2010)112201 [arXiv:1006.0036].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    E.M. Rains, Quantum codes of minimum distance two, IEEE Trans. Inf. Theor.45 (1999) 266 [quant-ph/9704043] [INSPIRE].

  19. [19]

    F. Huber, O. Guene and J. Siewert, Absolutely maximally entanged states of seven qubits do not exist, Phys. Rev. Lett.118 (2017) 200502 [arXiv:1608.06228].

    ADS  Article  Google Scholar 

  20. [20]

    W. Helwig, Absolutely maximally entangled qudit graph states, arXiv:1306.2879.

  21. [21]

    S. Bravyi and M. Hastings, On complexity of the quantum Ising model, Comm. Math. Phys.349 (2017)1 [arXiv:1410.0703] [INSPIRE].

  22. [22]

    J. Beckenstein, Black holes and entropy, Phys. Rev.D 7 (1973) 2333.

  23. [23]

    S.W. Hawking, Particle creation by black holes, Comm. Math. Phys.43 (1975) 199.

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    P. Hayden and G. Penington, Learning the alpha-bits of black holes, arXiv:1807.06041 [INSPIRE].

  25. [25]

    D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys.354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    S. Nezami and M. Walter, Multipartite entanglement in stabilizer tensor networks, arXiv:1608.02595 [INSPIRE].

  29. [29]

    A. Felikson and P. Tumarkin, Hyperbolic Coxeter polytopes,

  30. [30]

    J. Tits, Groupes et géométries de Coxeter, (1961)

  31. [31]

    M.W. Davis, The geometry and topology of Coxeter groups, Princeton University Press, Princeton U.S.A. (2007).

  32. [32]

    E.B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys40 (1985) 31.

    ADS  Article  Google Scholar 

  33. [33]

    P. Abramenko and K. Brown, Buildings theory and applications, Graduate Texts in Mathematics, Springer, Germany (2008).

    Google Scholar 

  34. [34]

    A.M. Cohen, Finite Coxeter groups, lecture notes (2008).

  35. [35]

    J. Weeks, Kaleidotile,

  36. [36]

    D. Aharonov and L. Zhou, Hamiltonian sparsification and gap-simulation, arXiv:1804.11084.

  37. [37]

    S. Piddock and A. Montanaro, The complexity of antiferromagnetic interactions and 2d lattices, Quant. Inf. Comput.17 (2015) 636 [arXiv:1506.04014].

    MathSciNet  Google Scholar 

  38. [38]

    R. Guglielmetti, CoxiterWeb,

  39. [39]

    W. Helwig and W. Cui, Absolutely maximally entangled states: existence and applications, arXiv:1306.2536.

  40. [40]

    D. Goyeneche et al., Absolutely maximally entangled states, combinatorial design and multi-unitary matrices, Phys. Rev.A 92 (2015) 032316 [arXiv:1506.08857] [INSPIRE].

  41. [41]

    W. Helwig et al., Absolute maximal entanglement and quantum secret sharing, Phys. Rev.A 86 (2012)052335 [arXiv:1204.2289] [INSPIRE].

  42. [42]

    R. Cleve, D. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett.83 (1999) 648 [quant-ph/9901025] [INSPIRE].

  43. [43]

    V. Gheorghiu, Standard form of qudit stabilizer groups, Phys. Lett.A 378 (2014) 505 [arXiv:1101.1519].

  44. [44]

    H. Kurzweil and B. Stellmacher, The theory of finite groups: an introduction, Springer, Germany (2004).

  45. [45]

    D. Gottesman, Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, Caltech, Pasadena, U.S.A. (1997).

  46. [46]

    I. Reed and G. Solomon, Polynomial codes over certain finite fields, J. Soc. Industr. Appl. Math.8 (1960) 300.

    MathSciNet  Article  Google Scholar 

  47. [47]

    G. Seroussi and R. Roth, On MDS extensions of generalized Reed-Solomon codes, IEEE Trans. Inf. Theor.32 (1986) 349.

    MathSciNet  Article  Google Scholar 

  48. [48]

    M. Grassl and M. Roetteler, Quantum MDS codes over small fields, IEEE Proc. Int. Symp. Inf. Theor. (2015) 1104 [arXiv:1502.05267].

  49. [49]

    T. Kohler and T. Cubitt, Translationally invariant universal classical Hamiltonians, J. Stat. Phys.176 (2019) 228 [arXiv:1807.01715].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information



Corresponding author

Correspondence to Tamara Kohler.

Additional information

ArXiv ePrint: 1810.08992

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kohler, T., Cubitt, T. Toy models of holographic duality between local Hamiltonians. J. High Energ. Phys. 2019, 17 (2019).

Download citation


  • AdS-CFT Correspondence
  • Black Holes