B.J. Carr and S.W. Hawking, Black holes in the early universe, Mon. Not. Roy. Astron. Soc.168 (1974) 399 [INSPIRE].
ADS
Article
Google Scholar
J. García-Bellido, A.D. Linde and D. Wands, Density perturbations and black hole formation in hybrid inflation, Phys. Rev.D 54 (1996) 6040 [astro-ph/9605094] [INSPIRE].
ADS
Article
Google Scholar
M. Kawasaki, A. Kusenko, Y. Tada and T.T. Yanagida, Primordial black holes as dark matter in supergravity inflation models, Phys. Rev.D 94 (2016) 083523 [arXiv:1606.07631] [INSPIRE].
S. Clesse and J. García-Bellido, The clustering of massive primordial black holes as dark matter: measuring their mass distribution with advanced LIGO, Phys. Dark Univ.15 (2017) 142 [arXiv:1603.05234] [INSPIRE].
K. Kannike, L. Marzola, M. Raidal and H. Veermäe, Single field double inflation and primordial black holes, JCAP09 (2017) 020 [arXiv:1705.06225] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Kawasaki, N. Sugiyama and T. Yanagida, Primordial black hole formation in a double inflation model in supergravity, Phys. Rev.D 57 (1998) 6050 [hep-ph/9710259] [INSPIRE].
R.-G. Cai, T.-B. Liu and S.-J. Wang, Sensitivity of primordial black hole abundance on the reheating phase, Phys. Rev.D 98 (2018) 043538 [arXiv:1806.05390] [INSPIRE].
C.-M. Yoo, T. Harada, J. Garriga and K. Kohri, Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold, PTEP2018 (2018) 123E01 [arXiv:1805.03946] [INSPIRE].
S. Young and C.T. Byrnes, Signatures of non-Gaussianity in the isocurvature modes of primordial black hole dark matter, JCAP04 (2015) 034 [arXiv:1503.01505] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Clesse and J. García-Bellido, Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies, Phys. Rev.D 92 (2015) 023524 [arXiv:1501.07565] [INSPIRE].
S.D.H. Hsu, Black holes from extended inflation, Phys. Lett.B 251 (1990) 343 [INSPIRE].
D. La and P.J. Steinhardt, Extended inflationary cosmology, Phys. Rev. Lett.62 (1989) 376 [Erratum ibid.62 (1989) 1066] [INSPIRE].
D. La and P.J. Steinhardt, Bubble percolation in extended inflationary models, Phys. Lett.B 220 (1989) 375 [INSPIRE].
D. La, P.J. Steinhardt and E.W. Bertschinger, Prescription for successful extended inflation, Phys. Lett.B 231 (1989) 231 [INSPIRE].
ADS
Article
Google Scholar
E.J. Weinberg, Some problems with extended inflation, Phys. Rev.D 40 (1989) 3950 [INSPIRE].
P.J. Steinhardt and F.S. Accetta, Hyperextended inflation, Phys. Rev. Lett.64 (1990) 2740 [INSPIRE].
F.S. Accetta and J.J. Trester, Extended inflation with induced gravity, Phys. Rev.D 39 (1989) 2854 [INSPIRE].
ADS
Article
Google Scholar
R. Holman, E.W. Kolb and Y. Wang, Gravitational couplings of the inflaton in extended inflation, Phys. Rev. Lett.65 (1990) 17 [INSPIRE].
ADS
Article
Google Scholar
S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble collisions in the very early universe, Phys. Rev.D 26 (1982) 2681 [INSPIRE].
M. Yu. Khlopov and A.G. Polnarev, Primordial black holes as a cosmological test of grand unification, Phys. Lett.B 97 (1980) 383 [INSPIRE].
J.L.G. Sobrinho, P. Augusto and A.L. Gonçalves, New thresholds for primordial black hole formation during the QCD phase transition, Mon. Not. Roy. Astron. Soc.463 (2016) 2348 [arXiv:1609.01205] [INSPIRE].
ADS
Article
Google Scholar
S.G. Rubin, M. Yu. Khlopov and A.S. Sakharov, Primordial black holes from nonequilibrium second order phase transition, Grav. Cosmol.6 (2000) 51 [hep-ph/0005271] [INSPIRE].
K. Jedamzik and J.C. Niemeyer, Primordial black hole formation during first order phase transitions, Phys. Rev.D 59 (1999) 124014 [astro-ph/9901293] [INSPIRE].
C.T. Byrnes, M. Hindmarsh, S. Young and M.R.S. Hawkins, Primordial black holes with an accurate QCD equation of state, JCAP08 (2018) 041 [arXiv:1801.06138] [INSPIRE].
ADS
Article
Google Scholar
T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter and density perturbation from primordial black holes, Phys. Rev.D 89 (2014) 103501 [arXiv:1401.1909] [INSPIRE].
O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black hole genesis of dark matter, JCAP04 (2018) 009 [arXiv:1712.07664] [INSPIRE].
ADS
Article
Google Scholar
L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: dark matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less), JCAP05 (2019) 005 [arXiv:1812.10606] [INSPIRE].
ADS
Article
Google Scholar
A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM, Astrophys. J.876 (2019) 85 [arXiv:1903.07603] [INSPIRE].
A.G. Riess et al., Milky way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant, Astrophys. J.861 (2018) 126 [arXiv:1804.10655] [INSPIRE].
A.G. Riess et al., A 2.4% determination of the local value of the Hubble constant, Astrophys. J.826 (2016) 56 [arXiv:1604.01424] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
J.L. Bernal, L. Verde and A.G. Riess, The trouble with H
0, JCAP10 (2016) 019 [arXiv:1607.05617] [INSPIRE].
K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W.L.K. Wu, Sounds discordant: classical distance ladder & ΛCDM-based determinations of the cosmological sound horizon, Astrophys. J.874 (2019) 4 [arXiv:1811.00537] [INSPIRE].
S. Weinberg, Goldstone bosons as fractional cosmic neutrinos, Phys. Rev. Lett.110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].
ADS
Article
Google Scholar
B. Shakya and J.D. Wells, Sterile neutrino dark matter with supersymmetry, Phys. Rev.D 96 (2017) 031702 [arXiv:1611.01517] [INSPIRE].
A. Berlin and N. Blinov, Thermal neutrino portal to sub-MeV dark matter, Phys. Rev.D 99 (2019) 095030 [arXiv:1807.04282] [INSPIRE].
F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot axions and the H
0tension, JCAP11 (2018) 014 [arXiv:1808.07430] [INSPIRE].
C. Dessert, C. Kilic, C. Trendafilova and Y. Tsai, Addressing astrophysical and cosmological problems with secretly asymmetric dark matter, Phys. Rev.D 100 (2019) 015029 [arXiv:1811.05534] [INSPIRE].
M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with a very light L
μ-L
τgauge boson, JHEP03 (2019) 071 [arXiv:1901.02010] [INSPIRE].
V. Poulin, T.L. Smith, T. Karwal and M. Kamionkowski, Early dark energy can resolve the Hubble tension, Phys. Rev. Lett.122 (2019) 221301 [arXiv:1811.04083] [INSPIRE].
ADS
Article
Google Scholar
V. Poulin, T.L. Smith, D. Grin, T. Karwal and M. Kamionkowski, Cosmological implications of ultralight axionlike fields, Phys. Rev.D 98 (2018) 083525 [arXiv:1806.10608] [INSPIRE].
V. Poulin, K.K. Boddy, S. Bird and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Phys. Rev.D 97 (2018) 123504 [arXiv:1803.02474] [INSPIRE].
P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, Rock ‘n’ roll solutions to the Hubble tension, arXiv:1904.01016 [INSPIRE].
T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Converting nonrelativistic dark matter to radiation, Phys. Rev.D 98 (2018) 023543 [arXiv:1803.03644] [INSPIRE].
C.D. Kreisch, F.-Y. Cyr-Racine and O. Doré, The neutrino puzzle: anomalies, interactions and cosmological tensions, arXiv:1902.00534 [INSPIRE].
XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].
E.W. Kolb and M.S. Turner, The early universe, Front. Phys.69 (1990) 1 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept.150 (1987) 1 [INSPIRE].
ADS
Article
Google Scholar
M.S. Turner, Windows on the axion, Phys. Rept.197 (1990) 67 [INSPIRE].
ADS
Article
Google Scholar
G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev.D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].
G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev.D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].
A. Merle and M. Totzauer, keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features, JCAP06 (2015) 011 [arXiv:1502.01011] [INSPIRE].
A. Merle, V. Niro and D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars, JCAP03 (2014) 028 [arXiv:1306.3996] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys.D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].
D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett.81 (1998) 4048 [hep-ph/9805473] [INSPIRE].
ADS
Article
Google Scholar
D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev.D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].
D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev.D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].
S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].
J.H. MacGibbon and B.R. Webber, Quark and gluon jet emission from primordial black holes: the instantaneous spectra, Phys. Rev.D 41 (1990) 3052 [INSPIRE].
J.H. MacGibbon, Quark and gluon jet emission from primordial black holes: 2. The lifetime emission, Phys. Rev.D 44 (1991) 376 [INSPIRE].
S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett.116 (2016) 201301 [arXiv:1603.00464] [INSPIRE].
ADS
Article
Google Scholar
B. Carr, F. Kuhnel and M. Sandstad, Primordial black holes as dark matter, Phys. Rev.D 94 (2016) 083504 [arXiv:1607.06077] [INSPIRE].
M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].
S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev.D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].
S.W. Hawking, Black hole explosions, Nature248 (1974) 30 [INSPIRE].
ADS
Article
Google Scholar
B.J. Carr, Some cosmological consequences of primordial black-hole evaporations, Astrophys. J.206 (1976) 8 [INSPIRE].
Ya. B. Zeldovich, Charge asymmetry of the universe due to black hole evaporation and weak interaction asymmetry, Pisma Zh. Eksp. Teor. Fiz.24 (1976) 29 [INSPIRE].
D. Toussaint, S.B. Treiman, F. Wilczek and A. Zee, Matter-antimatter accounting, thermodynamics and black hole radiation, Phys. Rev.D 19 (1979) 1036 [INSPIRE].
ADS
Article
Google Scholar
A.F. Grillo, Primordial black holes and baryon production in grand unified theories, Phys. Lett.B 94 (1980) 364 [INSPIRE].
M.S. Turner, Baryon production by primordial black holes, Phys. Lett.B 89 (1979) 155 [INSPIRE].
J.D. Barrow, E.J. Copeland, E.W. Kolb and A.R. Liddle, Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes, Phys. Rev.D 43 (1991) 984 [INSPIRE].
ADS
Article
Google Scholar
A.S. Majumdar, P. Das Gupta and R.P. Saxena, Baryogenesis from black hole evaporation, Int. J. Mod. Phys.D 4 (1995) 517 [INSPIRE].
A.G. Polnarev and M. Yu. Khlopov, Cosmology, primordial black holes and supermassive particles, Sov. Phys. Usp.28 (1985) 213 [Usp. Fiz. Nauk145 (1985) 369] [INSPIRE].
E.V. Bugaev, M.G. Elbakidze and K.V. Konishchev, Baryon asymmetry of the universe from evaporation of primordial black holes, Phys. Atom. Nucl.66 (2003) 476 [Yad. Fiz.66 (2003) 504] [astro-ph/0110660] [INSPIRE].
N. Upadhyay, P. Das Gupta and R.P. Saxena, Baryogenesis from primordial black holes after electroweak phase transition, Phys. Rev.D 60 (1999) 063513 [astro-ph/9903253] [INSPIRE].
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.B 155 (1985) 36 [INSPIRE].
M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].
J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev.D 42 (1990) 3344 [INSPIRE].
D. Baumann, P.J. Steinhardt and N. Turok, Primordial black hole baryogenesis, hep-th/0703250 [INSPIRE].
Y. Hamada and S. Iso, Baryon asymmetry from primordial black holes, PTEP2017 (2017) 033B02 [arXiv:1610.02586] [INSPIRE].
A. Hook, Baryogenesis from Hawking radiation, Phys. Rev.D 90 (2014) 083535 [arXiv:1404.0113] [INSPIRE].
CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].
D. Baumann, D. Green and B. Wallisch, Searching for light relics with large-scale structure, JCAP08 (2018) 029 [arXiv:1712.08067] [INSPIRE].
ADS
Article
Google Scholar
NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins, arXiv:1902.10541 [INSPIRE].
R. Allahverdi, J. Dent and J. Osinski, Nonthermal production of dark matter from primordial black holes, Phys. Rev.D 97 (2018) 055013 [arXiv:1711.10511] [INSPIRE].
D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP06 (2009) 023 [arXiv:0904.3331] [INSPIRE].
ADS
Article
Google Scholar
J.H. MacGibbon, Can Planck-mass relics of evaporating black holes close the universe?, Nature329 (1987) 308 [INSPIRE].
ADS
Article
Google Scholar
B.J. Carr, J.H. Gilbert and J.E. Lidsey, Black hole relics and inflation: limits on blue perturbation spectra, Phys. Rev.D 50 (1994) 4853 [astro-ph/9405027] [INSPIRE].
J.D. Barrow, E.J. Copeland and A.R. Liddle, The cosmology of black hole relics, Phys. Rev.D 46 (1992) 645 [INSPIRE].
D. Carney, S. Ghosh, G. Krnjaic and J.M. Taylor, Gravitational direct detection of dark matter, arXiv:1903.00492 [INSPIRE].
P. Svrček, Cosmological constant and axions in string theory, submitted to JHEP (2006) [hep-th/0607086] [INSPIRE].
P. Svrček and E. Witten, Axions in string theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].
A.M. Green and A.R. Liddle, Constraints on the density perturbation spectrum from primordial black holes, Phys. Rev.D 56 (1997) 6166 [astro-ph/9704251] [INSPIRE].
A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev.D 60 (1999) 063516 [astro-ph/9903484] [INSPIRE].
M. Lemoine, Moduli constraints on primordial black holes, Phys. Lett.B 481 (2000) 333 [hep-ph/0001238] [INSPIRE].
M. Yu. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav.23 (2006) 1875 [astro-ph/0406621] [INSPIRE].
K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev.D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].
K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett.64 (1990) 615 [INSPIRE].
ADS
Article
Google Scholar
P.C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev.136 (1964) B1224 [INSPIRE].
ADS
Article
Google Scholar
H. Bondi, On spherically symmetrical accretion, Mon. Not. Roy. Astron. Soc.112 (1952) 195 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar