Skip to main content

Dark radiation and superheavy dark matter from black hole domination

A preprint version of the article is available at arXiv.

Abstract

If even a relatively small number of black holes were created in the early universe, they will constitute an increasingly large fraction of the total energy density as space expands. It is thus well-motivated to consider scenarios in which the early universe included an era in which primordial black holes dominated the total energy density. Within this context, we consider Hawking radiation as a mechanism to produce both dark radiation and dark matter. If the early universe included a black hole dominated era, we find that Hawking radiation will produce dark radiation at a level ΔNeff ∼ 0.03 − 0.2 for each light and decoupled species of spin 0, 1/2, or 1. This range is well suited to relax the tension between late and early-time Hubble determinations, and is within the reach of upcoming CMB experiments. The dark matter could also originate as Hawking radiation in a black hole dominated early universe, although such dark matter candidates must be very heavy (mDM ≳ 1011 GeV) if they are to avoid exceeding the measured abundance.

References

  1. B.J. Carr and S.W. Hawking, Black holes in the early universe, Mon. Not. Roy. Astron. Soc.168 (1974) 399 [INSPIRE].

    ADS  Article  Google Scholar 

  2. J. García-Bellido, A.D. Linde and D. Wands, Density perturbations and black hole formation in hybrid inflation, Phys. Rev.D 54 (1996) 6040 [astro-ph/9605094] [INSPIRE].

    ADS  Article  Google Scholar 

  3. M. Kawasaki, A. Kusenko, Y. Tada and T.T. Yanagida, Primordial black holes as dark matter in supergravity inflation models, Phys. Rev.D 94 (2016) 083523 [arXiv:1606.07631] [INSPIRE].

  4. S. Clesse and J. García-Bellido, The clustering of massive primordial black holes as dark matter: measuring their mass distribution with advanced LIGO, Phys. Dark Univ.15 (2017) 142 [arXiv:1603.05234] [INSPIRE].

  5. K. Kannike, L. Marzola, M. Raidal and H. Veermäe, Single field double inflation and primordial black holes, JCAP09 (2017) 020 [arXiv:1705.06225] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. M. Kawasaki, N. Sugiyama and T. Yanagida, Primordial black hole formation in a double inflation model in supergravity, Phys. Rev.D 57 (1998) 6050 [hep-ph/9710259] [INSPIRE].

  7. R.-G. Cai, T.-B. Liu and S.-J. Wang, Sensitivity of primordial black hole abundance on the reheating phase, Phys. Rev.D 98 (2018) 043538 [arXiv:1806.05390] [INSPIRE].

  8. C.-M. Yoo, T. Harada, J. Garriga and K. Kohri, Primordial black hole abundance from random Gaussian curvature perturbations and a local density threshold, PTEP2018 (2018) 123E01 [arXiv:1805.03946] [INSPIRE].

  9. S. Young and C.T. Byrnes, Signatures of non-Gaussianity in the isocurvature modes of primordial black hole dark matter, JCAP04 (2015) 034 [arXiv:1503.01505] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. S. Clesse and J. García-Bellido, Massive primordial black holes from hybrid inflation as dark matter and the seeds of galaxies, Phys. Rev.D 92 (2015) 023524 [arXiv:1501.07565] [INSPIRE].

  11. S.D.H. Hsu, Black holes from extended inflation, Phys. Lett.B 251 (1990) 343 [INSPIRE].

  12. D. La and P.J. Steinhardt, Extended inflationary cosmology, Phys. Rev. Lett.62 (1989) 376 [Erratum ibid.62 (1989) 1066] [INSPIRE].

  13. D. La and P.J. Steinhardt, Bubble percolation in extended inflationary models, Phys. Lett.B 220 (1989) 375 [INSPIRE].

  14. D. La, P.J. Steinhardt and E.W. Bertschinger, Prescription for successful extended inflation, Phys. Lett.B 231 (1989) 231 [INSPIRE].

    ADS  Article  Google Scholar 

  15. E.J. Weinberg, Some problems with extended inflation, Phys. Rev.D 40 (1989) 3950 [INSPIRE].

  16. P.J. Steinhardt and F.S. Accetta, Hyperextended inflation, Phys. Rev. Lett.64 (1990) 2740 [INSPIRE].

  17. F.S. Accetta and J.J. Trester, Extended inflation with induced gravity, Phys. Rev.D 39 (1989) 2854 [INSPIRE].

    ADS  Article  Google Scholar 

  18. R. Holman, E.W. Kolb and Y. Wang, Gravitational couplings of the inflaton in extended inflation, Phys. Rev. Lett.65 (1990) 17 [INSPIRE].

    ADS  Article  Google Scholar 

  19. S.W. Hawking, I.G. Moss and J.M. Stewart, Bubble collisions in the very early universe, Phys. Rev.D 26 (1982) 2681 [INSPIRE].

  20. M. Yu. Khlopov and A.G. Polnarev, Primordial black holes as a cosmological test of grand unification, Phys. Lett.B 97 (1980) 383 [INSPIRE].

  21. J.L.G. Sobrinho, P. Augusto and A.L. Gonçalves, New thresholds for primordial black hole formation during the QCD phase transition, Mon. Not. Roy. Astron. Soc.463 (2016) 2348 [arXiv:1609.01205] [INSPIRE].

    ADS  Article  Google Scholar 

  22. S.G. Rubin, M. Yu. Khlopov and A.S. Sakharov, Primordial black holes from nonequilibrium second order phase transition, Grav. Cosmol.6 (2000) 51 [hep-ph/0005271] [INSPIRE].

  23. K. Jedamzik and J.C. Niemeyer, Primordial black hole formation during first order phase transitions, Phys. Rev.D 59 (1999) 124014 [astro-ph/9901293] [INSPIRE].

  24. C.T. Byrnes, M. Hindmarsh, S. Young and M.R.S. Hawkins, Primordial black holes with an accurate QCD equation of state, JCAP08 (2018) 041 [arXiv:1801.06138] [INSPIRE].

    ADS  Article  Google Scholar 

  25. T. Fujita, M. Kawasaki, K. Harigaya and R. Matsuda, Baryon asymmetry, dark matter and density perturbation from primordial black holes, Phys. Rev.D 89 (2014) 103501 [arXiv:1401.1909] [INSPIRE].

  26. O. Lennon, J. March-Russell, R. Petrossian-Byrne and H. Tillim, Black hole genesis of dark matter, JCAP04 (2018) 009 [arXiv:1712.07664] [INSPIRE].

    ADS  Article  Google Scholar 

  27. L. Morrison, S. Profumo and Y. Yu, Melanopogenesis: dark matter of (almost) any mass and baryonic matter from the evaporation of primordial black holes weighing a ton (or less), JCAP05 (2019) 005 [arXiv:1812.10606] [INSPIRE].

    ADS  Article  Google Scholar 

  28. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic cloud Cepheid standards provide a 1% foundation for the determination of the Hubble constant and stronger evidence for physics beyond ΛCDM, Astrophys. J.876 (2019) 85 [arXiv:1903.07603] [INSPIRE].

  29. A.G. Riess et al., Milky way Cepheid standards for measuring cosmic distances and application to Gaia DR2: implications for the Hubble constant, Astrophys. J.861 (2018) 126 [arXiv:1804.10655] [INSPIRE].

  30. A.G. Riess et al., A 2.4% determination of the local value of the Hubble constant, Astrophys. J.826 (2016) 56 [arXiv:1604.01424] [INSPIRE].

  31. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  32. J.L. Bernal, L. Verde and A.G. Riess, The trouble with H 0, JCAP10 (2016) 019 [arXiv:1607.05617] [INSPIRE].

  33. K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W.L.K. Wu, Sounds discordant: classical distance ladder & ΛCDM-based determinations of the cosmological sound horizon, Astrophys. J.874 (2019) 4 [arXiv:1811.00537] [INSPIRE].

  34. S. Weinberg, Goldstone bosons as fractional cosmic neutrinos, Phys. Rev. Lett.110 (2013) 241301 [arXiv:1305.1971] [INSPIRE].

    ADS  Article  Google Scholar 

  35. B. Shakya and J.D. Wells, Sterile neutrino dark matter with supersymmetry, Phys. Rev.D 96 (2017) 031702 [arXiv:1611.01517] [INSPIRE].

  36. A. Berlin and N. Blinov, Thermal neutrino portal to sub-MeV dark matter, Phys. Rev.D 99 (2019) 095030 [arXiv:1807.04282] [INSPIRE].

  37. F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot axions and the H 0tension, JCAP11 (2018) 014 [arXiv:1808.07430] [INSPIRE].

  38. C. Dessert, C. Kilic, C. Trendafilova and Y. Tsai, Addressing astrophysical and cosmological problems with secretly asymmetric dark matter, Phys. Rev.D 100 (2019) 015029 [arXiv:1811.05534] [INSPIRE].

  39. M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with a very light L μ-L τgauge boson, JHEP03 (2019) 071 [arXiv:1901.02010] [INSPIRE].

  40. V. Poulin, T.L. Smith, T. Karwal and M. Kamionkowski, Early dark energy can resolve the Hubble tension, Phys. Rev. Lett.122 (2019) 221301 [arXiv:1811.04083] [INSPIRE].

    ADS  Article  Google Scholar 

  41. V. Poulin, T.L. Smith, D. Grin, T. Karwal and M. Kamionkowski, Cosmological implications of ultralight axionlike fields, Phys. Rev.D 98 (2018) 083525 [arXiv:1806.10608] [INSPIRE].

  42. V. Poulin, K.K. Boddy, S. Bird and M. Kamionkowski, Implications of an extended dark energy cosmology with massive neutrinos for cosmological tensions, Phys. Rev.D 97 (2018) 123504 [arXiv:1803.02474] [INSPIRE].

  43. P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, Rocknroll solutions to the Hubble tension, arXiv:1904.01016 [INSPIRE].

  44. T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Converting nonrelativistic dark matter to radiation, Phys. Rev.D 98 (2018) 023543 [arXiv:1803.03644] [INSPIRE].

  45. C.D. Kreisch, F.-Y. Cyr-Racine and O. Doré, The neutrino puzzle: anomalies, interactions and cosmological tensions, arXiv:1902.00534 [INSPIRE].

  46. XENON collaboration, Dark matter search results from a one ton-year exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  47. LUX collaboration, Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett.118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].

  48. PandaX-II collaboration, Dark matter results from 54-ton-day exposure of PandaX-II experiment, Phys. Rev. Lett.119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  49. E.W. Kolb and M.S. Turner, The early universe, Front. Phys.69 (1990) 1 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  50. J.E. Kim, Light pseudoscalars, particle physics and cosmology, Phys. Rept.150 (1987) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  51. M.S. Turner, Windows on the axion, Phys. Rept.197 (1990) 67 [INSPIRE].

    ADS  Article  Google Scholar 

  52. G. Gelmini, P. Gondolo, A. Soldatenko and C.E. Yaguna, The effect of a late decaying scalar on the neutralino relic density, Phys. Rev.D 74 (2006) 083514 [hep-ph/0605016] [INSPIRE].

  53. G.B. Gelmini and P. Gondolo, Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model, Phys. Rev.D 74 (2006) 023510 [hep-ph/0602230] [INSPIRE].

  54. A. Merle and M. Totzauer, keV sterile neutrino dark matter from singlet scalar decays: basic concepts and subtle features, JCAP06 (2015) 011 [arXiv:1502.01011] [INSPIRE].

  55. A. Merle, V. Niro and D. Schmidt, New production mechanism for keV sterile neutrino dark matter by decays of frozen-in scalars, JCAP03 (2014) 028 [arXiv:1306.3996] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. G. Kane, K. Sinha and S. Watson, Cosmological moduli and the post-inflationary universe: a critical review, Int. J. Mod. Phys.D 24 (2015) 1530022 [arXiv:1502.07746] [INSPIRE].

  57. D.J.H. Chung, E.W. Kolb and A. Riotto, Nonthermal supermassive dark matter, Phys. Rev. Lett.81 (1998) 4048 [hep-ph/9805473] [INSPIRE].

    ADS  Article  Google Scholar 

  58. D.J.H. Chung, E.W. Kolb and A. Riotto, Production of massive particles during reheating, Phys. Rev.D 60 (1999) 063504 [hep-ph/9809453] [INSPIRE].

  59. D.J.H. Chung, P. Crotty, E.W. Kolb and A. Riotto, On the gravitational production of superheavy dark matter, Phys. Rev.D 64 (2001) 043503 [hep-ph/0104100] [INSPIRE].

  60. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.43 (1975) 199 [Erratum ibid.46 (1976) 206] [INSPIRE].

  61. J.H. MacGibbon and B.R. Webber, Quark and gluon jet emission from primordial black holes: the instantaneous spectra, Phys. Rev.D 41 (1990) 3052 [INSPIRE].

  62. J.H. MacGibbon, Quark and gluon jet emission from primordial black holes: 2. The lifetime emission, Phys. Rev.D 44 (1991) 376 [INSPIRE].

  63. S. Bird et al., Did LIGO detect dark matter?, Phys. Rev. Lett.116 (2016) 201301 [arXiv:1603.00464] [INSPIRE].

    ADS  Article  Google Scholar 

  64. B. Carr, F. Kuhnel and M. Sandstad, Primordial black holes as dark matter, Phys. Rev.D 94 (2016) 083504 [arXiv:1607.06077] [INSPIRE].

  65. M. Kawasaki, K. Kohri and N. Sugiyama, MeV scale reheating temperature and thermalization of neutrino background, Phys. Rev.D 62 (2000) 023506 [astro-ph/0002127] [INSPIRE].

  66. S. Hannestad, What is the lowest possible reheating temperature?, Phys. Rev.D 70 (2004) 043506 [astro-ph/0403291] [INSPIRE].

  67. S.W. Hawking, Black hole explosions, Nature248 (1974) 30 [INSPIRE].

    ADS  Article  Google Scholar 

  68. B.J. Carr, Some cosmological consequences of primordial black-hole evaporations, Astrophys. J.206 (1976) 8 [INSPIRE].

  69. Ya. B. Zeldovich, Charge asymmetry of the universe due to black hole evaporation and weak interaction asymmetry, Pisma Zh. Eksp. Teor. Fiz.24 (1976) 29 [INSPIRE].

  70. D. Toussaint, S.B. Treiman, F. Wilczek and A. Zee, Matter-antimatter accounting, thermodynamics and black hole radiation, Phys. Rev.D 19 (1979) 1036 [INSPIRE].

    ADS  Article  Google Scholar 

  71. A.F. Grillo, Primordial black holes and baryon production in grand unified theories, Phys. Lett.B 94 (1980) 364 [INSPIRE].

  72. M.S. Turner, Baryon production by primordial black holes, Phys. Lett.B 89 (1979) 155 [INSPIRE].

  73. J.D. Barrow, E.J. Copeland, E.W. Kolb and A.R. Liddle, Baryogenesis in extended inflation. 2. Baryogenesis via primordial black holes, Phys. Rev.D 43 (1991) 984 [INSPIRE].

    ADS  Article  Google Scholar 

  74. A.S. Majumdar, P. Das Gupta and R.P. Saxena, Baryogenesis from black hole evaporation, Int. J. Mod. Phys.D 4 (1995) 517 [INSPIRE].

  75. A.G. Polnarev and M. Yu. Khlopov, Cosmology, primordial black holes and supermassive particles, Sov. Phys. Usp.28 (1985) 213 [Usp. Fiz. Nauk145 (1985) 369] [INSPIRE].

  76. E.V. Bugaev, M.G. Elbakidze and K.V. Konishchev, Baryon asymmetry of the universe from evaporation of primordial black holes, Phys. Atom. Nucl.66 (2003) 476 [Yad. Fiz.66 (2003) 504] [astro-ph/0110660] [INSPIRE].

  77. N. Upadhyay, P. Das Gupta and R.P. Saxena, Baryogenesis from primordial black holes after electroweak phase transition, Phys. Rev.D 60 (1999) 063513 [astro-ph/9903253] [INSPIRE].

  78. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett.B 155 (1985) 36 [INSPIRE].

  79. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett.B 174 (1986) 45 [INSPIRE].

  80. J.A. Harvey and M.S. Turner, Cosmological baryon and lepton number in the presence of electroweak fermion number violation, Phys. Rev.D 42 (1990) 3344 [INSPIRE].

  81. D. Baumann, P.J. Steinhardt and N. Turok, Primordial black hole baryogenesis, hep-th/0703250 [INSPIRE].

  82. Y. Hamada and S. Iso, Baryon asymmetry from primordial black holes, PTEP2017 (2017) 033B02 [arXiv:1610.02586] [INSPIRE].

  83. A. Hook, Baryogenesis from Hawking radiation, Phys. Rev.D 90 (2014) 083535 [arXiv:1404.0113] [INSPIRE].

  84. CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  85. D. Baumann, D. Green and B. Wallisch, Searching for light relics with large-scale structure, JCAP08 (2018) 029 [arXiv:1712.08067] [INSPIRE].

    ADS  Article  Google Scholar 

  86. NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins, arXiv:1902.10541 [INSPIRE].

  87. R. Allahverdi, J. Dent and J. Osinski, Nonthermal production of dark matter from primordial black holes, Phys. Rev.D 97 (2018) 055013 [arXiv:1711.10511] [INSPIRE].

  88. D.-C. Dai, K. Freese and D. Stojkovic, Constraints on dark matter particles charged under a hidden gauge group from primordial black holes, JCAP06 (2009) 023 [arXiv:0904.3331] [INSPIRE].

    ADS  Article  Google Scholar 

  89. J.H. MacGibbon, Can Planck-mass relics of evaporating black holes close the universe?, Nature329 (1987) 308 [INSPIRE].

    ADS  Article  Google Scholar 

  90. B.J. Carr, J.H. Gilbert and J.E. Lidsey, Black hole relics and inflation: limits on blue perturbation spectra, Phys. Rev.D 50 (1994) 4853 [astro-ph/9405027] [INSPIRE].

  91. J.D. Barrow, E.J. Copeland and A.R. Liddle, The cosmology of black hole relics, Phys. Rev.D 46 (1992) 645 [INSPIRE].

  92. D. Carney, S. Ghosh, G. Krnjaic and J.M. Taylor, Gravitational direct detection of dark matter, arXiv:1903.00492 [INSPIRE].

  93. P. Svrček, Cosmological constant and axions in string theory, submitted to JHEP (2006) [hep-th/0607086] [INSPIRE].

  94. P. Svrček and E. Witten, Axions in string theory, JHEP06 (2006) 051 [hep-th/0605206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  95. A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev.D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

  96. P. Fox, A. Pierce and S.D. Thomas, Probing a QCD string axion with precision cosmological measurements, hep-th/0409059 [INSPIRE].

  97. A.M. Green and A.R. Liddle, Constraints on the density perturbation spectrum from primordial black holes, Phys. Rev.D 56 (1997) 6166 [astro-ph/9704251] [INSPIRE].

  98. A.M. Green, Supersymmetry and primordial black hole abundance constraints, Phys. Rev.D 60 (1999) 063516 [astro-ph/9903484] [INSPIRE].

  99. M. Lemoine, Moduli constraints on primordial black holes, Phys. Lett.B 481 (2000) 333 [hep-ph/0001238] [INSPIRE].

  100. M. Yu. Khlopov, A. Barrau and J. Grain, Gravitino production by primordial black hole evaporation and constraints on the inhomogeneity of the early universe, Class. Quant. Grav.23 (2006) 1875 [astro-ph/0406621] [INSPIRE].

  101. K.M. Nollett and G. Steigman, BBN and the CMB constrain light, electromagnetically coupled WIMPs, Phys. Rev.D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].

  102. K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett.64 (1990) 615 [INSPIRE].

    ADS  Article  Google Scholar 

  103. P.C. Peters, Gravitational radiation and the motion of two point masses, Phys. Rev.136 (1964) B1224 [INSPIRE].

    ADS  Article  Google Scholar 

  104. H. Bondi, On spherically symmetrical accretion, Mon. Not. Roy. Astron. Soc.112 (1952) 195 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. McDermott.

Additional information

ArXiv ePrint: 1905.01301

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hooper, D., Krnjaic, G. & McDermott, S.D. Dark radiation and superheavy dark matter from black hole domination. J. High Energ. Phys. 2019, 1 (2019). https://doi.org/10.1007/JHEP08(2019)001

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2019)001

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM