Skip to main content

The decay hγγ in the Standard-Model Effective Field Theory

A preprint version of the article is available at arXiv.

Abstract

Assuming that new physics effects are parametrized by the Standard-Model Effective Field Theory (SMEFT) written in a complete basis of up to dimension-6 operators, we calculate the CP-conserving one-loop amplitude for the decay hγγ in general Rξ - gauges. We employ a simple renormalisation scheme that is hybrid between on-shell \( \overline{\mathrm{SM}} \)-like renormalised parameters and running MS Wilson coefficients. The resulting amplitude is then finite, renormalisation scale invariant, independent of the gauge choice (ξ) and respects SM Ward identities. Remarkably, the S-matrix amplitude calculation resembles very closely the one usually known from renormalisable theories and can be automatised to a high degree. We use this gauge invariant amplitude and recent LHC data to check upon sensitivity to various Wilson coefficients entering from a more complete theory at the matching energy scale. We present a closed expression for the ratio ℛh→ γγ , of the Beyond the SM versus the SM contributions as appeared in LHC hγγ searches. The most important contributions arise at tree level from the operators QφB , QφW , QφW B , and at one-loop level from the dipole operators QuB, QuW. Our calculation shows also that, for operators that appear at tree level in SMEFT, one-loop corrections can modify their contributions by less than 10%. Wilson coefficients corresponding to these five operators are bounded from current LHC hγγ data — in some cases an order of magnitude stronger than from other searches. Finally, we correct results that appeared previously in the literature.

References

  1. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global Conservation Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    ADS  Article  Google Scholar 

  4. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  5. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  6. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

  7. M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  8. ATLAS collaboration, Measurements of Higgs boson properties in the diphoton decay channel with 36 fb −1 of pp collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1802.04146 [INSPIRE].

  9. CMS collaboration, Measurements of Higgs boson properties in the diphoton decay channel in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1804.02716 [INSPIRE].

  10. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

  11. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  12. T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

  13. A. Dedes, W. Materkowska, M. Paraskevas, J. Rosiek and K. Suxho, Feynman rules for the Standard Model Effective Field Theory in R ξ -gauges, JHEP 06 (2017) 143 [arXiv:1704.03888] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. B. Ioffe and V.A. Khoze, What Can Be Expected from Experiments on Colliding e + e Beams with Energy Approximately Equal to 100 GeV?, Sov. J. Part. Nucl. 9 (1978) 50.

  15. M.B. Gavela, G. Girardi, C. Malleville and P. Sorba, A Nonlinear R(xi) Gauge Condition for the Electroweak SU(2) × U(1) Model, Nucl. Phys. B 193 (1981) 257 [INSPIRE].

  16. D. Huang, Y. Tang and Y.-L. Wu, Note on Higgs Decay into Two Photons Hγγ, Commun. Theor. Phys. 57 (2012) 427 [arXiv:1109.4846] [INSPIRE].

  17. H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Higgs Decay into Two Photons and Reduction Schemes in Cutoff Regularization, JHEP 01 (2012) 053 [arXiv:1110.6925] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. F. Bursa, A. Cherman, T.C. Hammant, R.R. Horgan and M. Wingate, Calculation of the One W Loop Hγγ Decay Amplitude with a Lattice Regulator, Phys. Rev. D 85 (2012) 093009 [arXiv:1112.2135] [INSPIRE].

  19. F. Piccinini, A. Pilloni and A.D. Polosa, Hγγ: A Comment on the Indeterminacy of Non-Gauge-Invariant Integrals, Chin. Phys. C 37 (2013) 043102 [arXiv:1112.4764] [INSPIRE].

  20. A. Dedes and K. Suxho, Anatomy of the Higgs boson decay into two photons in the unitary gauge, Adv. High Energy Phys. 2013 (2013) 631841 [arXiv:1210.0141] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  21. A.L. Cherchiglia, L.A. Cabral, M.C. Nemes and M. Sampaio, (Un)determined finite regularization dependent quantum corrections: the Higgs boson decay into two photons and the two photon scattering examples, Phys. Rev. D 87 (2013) 065011 [arXiv:1210.6164] [INSPIRE].

  22. A.M. Donati and R. Pittau, Gauge invariance at work in FDR: Hγγ, JHEP 04 (2013) 167 [arXiv:1302.5668] [INSPIRE].

  23. W.J. Marciano, C. Zhang and S. Willenbrock, Higgs Decay to Two Photons, Phys. Rev. D 85 (2012) 013002 [arXiv:1109.5304] [INSPIRE].

  24. I. Brivio and M. Trott, The Standard Model as an Effective Field Theory, arXiv:1706.08945 [INSPIRE].

  25. A.V. Manohar, Introduction to Effective Field Theories, in Les Houches summer school: EFT in Particle Physics and Cosmology Les Houches, Chamonix Valley, France, July 3-28, 2017, arXiv:1804.05863 [INSPIRE].

  26. A.V. Manohar and M.B. Wise, Modifications to the properties of the Higgs boson, Phys. Lett. B 636 (2006) 107 [hep-ph/0601212] [INSPIRE].

  27. C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and hγγ decay, JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].

  28. M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. E. Vryonidou and C. Zhang, Dimension-six electroweak top-loop effects in Higgs production and decay, arXiv:1804.09766 [INSPIRE].

  30. M.A. Perez and J.J. Toscano, The decay H 0gammagamma and the nonstandard couplings W W γ, W W H, Phys. Lett. B 289 (1992) 381 [INSPIRE].

  31. J.M. Hernandez, M.A. Perez and J.J. Toscano, Decays H0 → γγ, γZ, and ZγH0 in the effective Lagrangian approach, Phys. Rev. D 51 (1995) R2044.

  32. S. Dawson and P.P. Giardino, Higgs decays to ZZ and Zγ in the standard model effective field theory: An NLO analysis, Phys. Rev. D 97 (2018) 093003 [arXiv:1801.01136] [INSPIRE].

  33. C. Hartmann and M. Trott, Higgs Decay to Two Photons at One Loop in the Standard Model Effective Field Theory, Phys. Rev. Lett. 115 (2015) 191801 [arXiv:1507.03568] [INSPIRE].

    ADS  Article  Google Scholar 

  34. C. Hartmann and M. Trott, On one-loop corrections in the standard model effective field theory; the Γ(hγ γ) case, JHEP 07 (2015) 151 [arXiv:1505.02646] [INSPIRE].

  35. L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE].

  36. A. Helset, M. Paraskevas and M. Trott, Gauge fixing the Standard Model Effective Field Theory, Phys. Rev. Lett. 120 (2018) 251801 [arXiv:1803.08001] [INSPIRE].

    ADS  Article  Google Scholar 

  37. C.W. Murphy, Statistical approach to Higgs boson couplings in the standard model effective field theory, Phys. Rev. D 97 (2018) 015007 [arXiv:1710.02008] [INSPIRE].

  38. S. Jana and S. Nandi, New Physics Scale from Higgs Observables with Effective Dimension-6 Operators, Phys. Lett. B 783 (2018) 51 [arXiv:1710.00619] [INSPIRE].

  39. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated Global SMEFT Fit to Higgs, Diboson and Electroweak Data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    ADS  Article  Google Scholar 

  40. C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].

  41. M.B. Einhorn and J. Wudka, The Bases of Effective Field Theories, Nucl. Phys. B 876 (2013) 556 [arXiv:1307.0478] [INSPIRE].

  42. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  43. H.D. Politzer, Power Corrections at Short Distances, Nucl. Phys. B 172 (1980) 349 [INSPIRE].

  44. C. Arzt, Reduced effective Lagrangians, Phys. Lett. B 342 (1995) 189 [hep-ph/9304230] [INSPIRE].

  45. H. Georgi, On-shell effective field theory, Nucl. Phys. B 361 (1991) 339 [INSPIRE].

  46. A. Sirlin, Radiative Corrections in the SU(2)L × U(1) Theory: A Simple Renormalization Framework, Phys. Rev. D 22 (1980) 971 [INSPIRE].

  47. R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].

    ADS  Article  Google Scholar 

  48. A. Sirlin and R. Zucchini, Dependence of the Quartic Coupling H(m) on M(H) and the Possible Onset of New Physics in the Higgs Sector of the Standard Model, Nucl. Phys. B 266 (1986) 389 [INSPIRE].

  49. H. Lehmann, K. Symanzik and W. Zimmermann, On the formulation of quantized field theories, Nuovo Cim. 1 (1955) 205 [INSPIRE].

    Article  MATH  Google Scholar 

  50. M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Addison-Wesley, Reading, U.S.A., (1995).

  51. W.J. Marciano and A. Sirlin, Radiative Corrections to Neutrino Induced Neutral Current Phenomena in the SU(2)L × U(1) Theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1985) 213] [INSPIRE].

  52. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  53. E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].

    ADS  Article  Google Scholar 

  54. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e Annihilation Into μ + μ in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

  55. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter’s Guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  56. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

  57. A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: The Standard Model Effective Field Theory Toolkit, Eur. Phys. J. C 77 (2017) 405 [arXiv:1704.04504] [INSPIRE].

  58. J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, arXiv:1804.05033 [INSPIRE].

  59. A.J. Buras and M. Jung, Analytic inclusion of the scale dependence of the anomalous dimension matrix in Standard Model Effective Theory, JHEP 06 (2018) 067 [arXiv:1804.05852] [INSPIRE].

    ADS  Article  Google Scholar 

  60. B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett. B 265 (1991) 326 [INSPIRE].

  61. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].

  62. A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].

    ADS  Article  Google Scholar 

  63. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  64. J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03 (2018) 109 [arXiv:1711.10391] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. A.V. Manohar, An Exactly Solvable Model for Dimension Six Higgs Operators and hγγ, Phys. Lett. B 726 (2013) 347 [arXiv:1305.3927] [INSPIRE].

  66. R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    ADS  Article  Google Scholar 

  67. V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

  68. H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. H.H. Patel, Package-X 2.0: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 218 (2017) 66 [arXiv:1612.00009] [INSPIRE].

  70. G. Degrassi and A. Sirlin, Gauge dependence of basic electroweak corrections of the standard model, Nucl. Phys. B 383 (1992) 73 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dedes.

Additional information

ArXiv ePrint: 1805.00302

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dedes, A., Paraskevas, M., Rosiek, J. et al. The decay hγγ in the Standard-Model Effective Field Theory. J. High Energ. Phys. 2018, 103 (2018). https://doi.org/10.1007/JHEP08(2018)103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2018)103

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Higgs Physics