Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A realistic U(2) model of flavor

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 13 August 2018
  • Volume 2018, article number 58, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A realistic U(2) model of flavor
Download PDF
  • Matthias Linster  ORCID: orcid.org/0000-0002-7476-29271 &
  • Robert Ziegler1,2 
  • 334 Accesses

  • 6 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

We propose a simple U(2) model of flavor compatible with an SU(5) GUT structure. All hierarchies in fermion masses and mixings arise from powers of two small parameters that control the U(2) breaking. In contrast to previous U(2) models this setup can be realized without supersymmetry and provides an excellent fit to all SM flavor observables including neutrinos. We also consider a variant of this model based on a D6 × U(1)F flavor symmetry, which closely resembles the U(2) structure, but allows for Majorana neutrino masses from the Weinberg operator. Remarkably, in this case one naturally obtains large mixing angles in the lepton sector from small mixing angles in the quark sector. The model also offers a natural option for addressing the Strong CP Problem and Dark Matter by identifying the Goldstone boson of the U(1)F factor as the QCD axion.

Article PDF

Download to read the full article text

Similar content being viewed by others

Flavor-dependent U(1) extension inspired by lepton, baryon and color numbers

Article Open access 17 November 2023

Flavor symmetries in an SU(5) model of grand unification

Article Open access 05 January 2022

Anomaly free Froggatt-Nielsen models of flavor

Article Open access 17 October 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373 [arXiv:1503.04071] [INSPIRE].

  2. R. Barbieri, G.R. Dvali and L.J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric theories, Phys. Lett. B 377 (1996) 76 [hep-ph/9512388] [INSPIRE].

  3. R. Barbieri, L.J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B 401 (1997) 47 [hep-ph/9702315] [INSPIRE].

  4. R.G. Roberts, A. Romanino, G.G. Ross and L. Velasco-Sevilla, Precision Test of a Fermion Mass Texture, Nucl. Phys. B 615 (2001) 358 [hep-ph/0104088] [INSPIRE].

  5. R. Dermisek and S. Raby, Fermion masses and neutrino oscillations in SO(10) SUSY GUT with D 3 × U(1) family symmetry, Phys. Rev. D 62 (2000) 015007 [hep-ph/9911275] [INSPIRE].

  6. E. Dudas, G. von Gersdorff, S. Pokorski and R. Ziegler, Linking Natural Supersymmetry to Flavour Physics, JHEP 01 (2014) 117 [arXiv:1308.1090] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Falkowski, M. Nardecchia and R. Ziegler, Lepton Flavor Non-Universality in B-meson Decays from a U(2) Flavor Model, JHEP 11 (2015) 173 [arXiv:1509.01249] [INSPIRE].

  8. LHCb collaboration, Test of lepton universality using B + → K + ℓ + ℓ − decays, Phys. Rev. Lett. 113 (2014) 151601 [arXiv:1406.6482] [INSPIRE].

  9. LHCb collaboration, Test of lepton universality with B 0 → K ∗0 ℓ + ℓ − decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].

  10. F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].

    Article  ADS  Google Scholar 

  11. L. Calibbi, F. Goertz, D. Redigolo, R. Ziegler and J. Zupan, Minimal axion model from flavor, Phys. Rev. D 95 (2017) 095009 [arXiv:1612.08040] [INSPIRE].

  12. Y. Ema, K. Hamaguchi, T. Moroi and K. Nakayama, Flaxion: a minimal extension to solve puzzles in the standard model, JHEP 01 (2017) 096 [arXiv:1612.05492] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

  14. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].

    Article  ADS  Google Scholar 

  15. NuFIT 3.2, (2018) www.nu-fit.org.

  16. KATRIN collaboration, A. Osipowicz et al., KATRIN: A Next generation tritium beta decay experiment with sub-eV sensitivity for the electron neutrino mass. Letter of intent, hep-ex/0109033 [INSPIRE].

  17. Planck collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  18. EUCLID collaboration, R. Laureijs et al., Euclid Definition Study Report, arXiv:1110.3193 [INSPIRE].

  19. L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel. 21 (2018) 2 [arXiv:1606.00180] [INSPIRE].

    Article  Google Scholar 

  20. S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless Double Beta Decay: 2015 Review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].

    Google Scholar 

  21. M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

  22. A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [INSPIRE].

  23. J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. L. Di Luzio, F. Mescia, E. Nardi, P. Panci and R. Ziegler, Astrophobic Axions, Phys. Rev. Lett. 120 (2018) 261803 [arXiv:1712.04940] [INSPIRE].

  26. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  27. S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

    Article  ADS  Google Scholar 

  28. CLEO collaboration, R. Ammar et al., Search for the familon via B ± → π ± X 0 , B ± → K ± X 0 and B ± → K 0 S X 0 decays, Phys. Rev. Lett. 87 (2001) 271801 [hep-ex/0106038] [INSPIRE].

  29. E787 and E949 collaborations, S. Adler et al., Measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. D 77 (2008) 052003 [arXiv:0709.1000] [INSPIRE].

  30. A. Jodidio et al., Search for Right-Handed Currents in Muon Decay, Phys. Rev. D 34 (1986) 1967 [Erratum ibid. D 37 (1988) 237] [INSPIRE].

  31. R.D. Bolton et al., Search for Rare Muon Decays with the Crystal Box Detector, Phys. Rev. D 38 (1988) 2077 [INSPIRE].

    ADS  Google Scholar 

  32. J.T. Goldman et al., Light Boson Emission in the Decay of the μ +, Phys. Rev. D 36 (1987) 1543 [INSPIRE].

  33. M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    Article  ADS  Google Scholar 

  34. W. Keil, H.-T. Janka, D.N. Schramm, G. Sigl, M.S. Turner and J.R. Ellis, A Fresh look at axions and SN-1987A, Phys. Rev. D 56 (1997) 2419 [astro-ph/9612222] [INSPIRE].

  35. ARGUS collaboration, H. Albrecht et al., A Search for lepton flavor violating decays τ →eα, τ →μα, Z. Phys. C 68 (1995) 25 [INSPIRE].

  36. J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion and an Axion-like Particle, arXiv:1803.00993 [INSPIRE].

  37. G. Anelli et al., Proposal to Measure the Rare Decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) at the CERN SPS, CERN-SPSC-2005-013 (2005) [SPSC-P-326] [INSPIRE].

  38. NA62 collaboration, R. Fantechi, The NA62 experiment at CERN: status and perspectives, in proceedings of the 12th Conference on Flavor Physics and CP Violation (FPCP 2014), Marseille, France, 26-30 May 2014, arXiv:1407.8213, http://inspirehep.net/record/1309159/files/arXiv:1407.8213.pdf [INSPIRE].

  39. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

  40. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

  41. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

  42. Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].

  43. ADMX collaboration, S.J. Asztalos et al., An Improved RF cavity search for halo axions, Phys. Rev. D 69 (2004) 011101 [astro-ph/0310042] [INSPIRE].

  44. L. Di Luzio, F. Mescia and E. Nardi, Redefining the Axion Window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].

  45. S. Hannestad, A. Mirizzi, G.G. Raffelt and Y.Y.Y. Wong, Neutrino and axion hot dark matter bounds after WMAP-7, JCAP 08 (2010) 001 [arXiv:1004.0695] [INSPIRE].

    ADS  Google Scholar 

  46. M. Archidiacono, S. Hannestad, A. Mirizzi, G. Raffelt and Y.Y.Y. Wong, Axion hot dark matter bounds after Planck, JCAP 10 (2013) 020 [arXiv:1307.0615] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E. Di Valentino, E. Giusarma, M. Lattanzi, O. Mena, A. Melchiorri and J. Silk, Cosmological Axion and neutrino mass constraints from Planck 2015 temperature and polarization data, Phys. Lett. B 752 (2016) 182 [arXiv:1507.08665] [INSPIRE].

  48. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].

  49. R. Bähre et al., Any light particle search II —Technical Design Report, 2013 JINST 8 T09001 [arXiv:1302.5647] [INSPIRE].

  50. CAST collaboration, V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].

  51. IAXO collaboration, I. Irastorza et al., The International Axion Observatory IAXO. Letter of Intent to the CERN SPS committee, CERN-SPSC-2013-022 [INSPIRE].

  52. E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].

  53. ADMX collaboration, S.J. Asztalos et al., A SQUID-based microwave cavity search for dark-matter axions, Phys. Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].

  54. ADMX collaboration, C. Hagmann et al., Results from a high sensitivity search for cosmic axions, Phys. Rev. Lett. 80 (1998) 2043 [astro-ph/9801286] [INSPIRE].

  55. MADMAX Working Group, A. Caldwell et al., Dielectric Haloscopes: A New Way to Detect Axion Dark Matter, Phys. Rev. Lett. 118 (2017) 091801 [arXiv:1611.05865] [INSPIRE].

  56. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

  57. A. Ernst, A. Ringwald and C. Tamarit, Axion Predictions in SO(10) × U(1)PQ Models, JHEP 02 (2018) 103 [arXiv:1801.04906] [INSPIRE].

  58. A. Blum, C. Hagedorn and M. Lindner, Fermion Masses and Mixings from Dihedral Flavor Symmetries with Preserved Subgroups, Phys. Rev. D 77 (2008) 076004 [arXiv:0709.3450] [INSPIRE].

  59. W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001 [arXiv:1110.6376] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology, Engesserstraße 7, Karlsruhe, 76128, Germany

    Matthias Linster & Robert Ziegler

  2. Theoretical Physics Department, CERN, Geneva 23, 1211, Switzerland

    Robert Ziegler

Authors
  1. Matthias Linster
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Robert Ziegler
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Robert Ziegler.

Additional information

ArXiv ePrint: 1805.07341

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linster, M., Ziegler, R. A realistic U(2) model of flavor. J. High Energ. Phys. 2018, 58 (2018). https://doi.org/10.1007/JHEP08(2018)058

Download citation

  • Received: 05 June 2018

  • Revised: 20 July 2018

  • Accepted: 23 July 2018

  • Published: 13 August 2018

  • DOI: https://doi.org/10.1007/JHEP08(2018)058

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quark Masses and SM Parameters
  • Neutrino Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature