Hybrid fluid models from mutual effective metric couplings

  • Aleksi Kurkela
  • Ayan Mukhopadhyay
  • Florian Preis
  • Anton RebhanEmail author
  • Alexander Soloviev
Open Access
Regular Article - Theoretical Physics


Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.


Holography and quark-gluon plasmas Quark-Gluon Plasma 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of EquilibriumTen Years of Progress in Theory and Numerical Simulations of Nuclear Collisions, arXiv:1712.05815 [INSPIRE].
  3. [3]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  4. [4]
    M. Connors, C. Nattrass, R. Reed and S. Salur, Jet measurements in heavy ion physics, Rev. Mod. Phys. 90 (2018) 025005 [arXiv:1705.01974] [INSPIRE].
  5. [5]
    J. Casalderrey-Solana, D.C. Gulhan, J.G. Milhano, D. Pablos and K. Rajagopal, A Hybrid Strong/Weak Coupling Approach to Jet Quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
  6. [6]
    E. Iancu and A. Mukhopadhyay, A semi-holographic model for heavy-ion collisions, JHEP 06 (2015) 003 [arXiv:1410.6448] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    A. Mukhopadhyay, F. Preis, A. Rebhan and S.A. Stricker, Semi-Holography for Heavy Ion Collisions: Self-Consistency and First Numerical Tests, JHEP 05 (2016) 141 [arXiv:1512.06445] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Liu, K. Rajagopal and U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
  9. [9]
    T. Faulkner and J. Polchinski, Semi-Holographic Fermi Liquids, JHEP 06 (2011) 012 [arXiv:1001.5049] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    D. Nickel and D.T. Son, Deconstructing holographic liquids, New J. Phys. 13 (2011) 075010 [arXiv:1009.3094] [INSPIRE].
  11. [11]
    K. Jensen, Semi-Holographic Quantum Criticality, Phys. Rev. Lett. 107 (2011) 231601 [arXiv:1108.0421] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    A. Mukhopadhyay and G. Policastro, Phenomenological Characterization of Semiholographic Non-Fermi Liquids, Phys. Rev. Lett. 111 (2013) 221602 [arXiv:1306.3941] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production at high transverse momentum in the McLerran-Venugopalan model of nuclear structure functions, Phys. Rev. D 52 (1995) 3809 [hep-ph/9505320] [INSPIRE].
  15. [15]
    A. Kovner, L.D. McLerran and H. Weigert, Gluon production from nonAbelian Weizsäcker-Williams fields in nucleus-nucleus collisions, Phys. Rev. D 52 (1995) 6231 [hep-ph/9502289] [INSPIRE].
  16. [16]
    C. Ecker, A. Mukhopadhyay, F. Preis, A. Rebhan and A. Soloviev, Time evolution of a toy semiholographic glasma, arXiv:1806.01850 [INSPIRE].
  17. [17]
    S. Banerjee, N. Gaddam and A. Mukhopadhyay, Illustrated study of the semiholographic nonperturbative framework, Phys. Rev. D 95 (2017) 066017 [arXiv:1701.01229] [INSPIRE].
  18. [18]
    G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].
  19. [19]
    S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Guida and J. Zinn-Justin, Critical exponents of the N vector model, J. Phys. A 31 (1998) 8103 [cond-mat/9803240] [INSPIRE].
  21. [21]
    R.D. Pisarski and V.V. Skokov, Gross-Witten-Wadia transition in a matrix model of deconfinement, Phys. Rev. D 86 (2012) 081701 [arXiv:1206.1329] [INSPIRE].
  22. [22]
    P. Romatschke, Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset transitions, Eur. Phys. J. C 76 (2016) 352 [arXiv:1512.02641] [INSPIRE].
  23. [23]
    A. Kurkela and U.A. Wiedemann, Analytic structure of nonhydrodynamic modes in kinetic theory, arXiv:1712.04376 [INSPIRE].
  24. [24]
    H. Andreasson, The Einstein-Vlasov System/Kinetic Theory, Living Rev. Rel. 14 (2011) 4 [arXiv:1106.1367] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M.G. Alford, S.K. Mallavarapu, A. Schmitt and S. Stetina, Role reversal in first and second sound in a relativistic superfluid, Phys. Rev. D 89 (2014) 085005 [arXiv:1310.5953] [INSPIRE].
  26. [26]
    P.B. Arnold, G.D. Moore and L.G. Yaffe, Effective kinetic theory for high temperature gauge theories, JHEP 01 (2003) 030 [hep-ph/0209353] [INSPIRE].
  27. [27]
    U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved Holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Aleksi Kurkela
    • 1
    • 2
  • Ayan Mukhopadhyay
    • 3
    • 4
  • Florian Preis
    • 3
  • Anton Rebhan
    • 3
    Email author
  • Alexander Soloviev
    • 3
  1. 1.Theoretical Physics DepartmentCERNGenevaSwitzerland
  2. 2.Faculty of Science and TechnologyUniversity of StavangerStavangerNorway
  3. 3.Institut für Theoretische Physik, Technische Universität WienViennaAustria
  4. 4.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations