SYK-like tensor models on the lattice

Abstract

We study large N tensor models on the lattice without disorder. We introduce techniques which can be applied to a wide class of models, and illustrate it by studying some specific rank-3 tensor models. In particular, we study Klebanov-Tarnopolsky model on lattice, Gurau-Witten model (by treating it as a tensor model on four sites) and also a new model which interpolates between these two models. In each model, we evaluate various four point functions at large N and strong coupling, and discuss their spectrum and long time behaviors. We find similarities as well as differences from SYK model. We also generalize our analysis to rank-D tensor models where we obtain analogous results as D = 3 case for the four point functions which we computed. For D > 5, we are able to compute the next-to-subleading \( \frac{1}{N} \) corrections for a specific four point function.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].

  2. [2]

    S. Sachdev, Holographic metals and the fractionalized Fermi liquid, Phys. Rev. Lett. 105 (2010) 151602 [arXiv:1006.3794] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Kitaev, Hidden correlations in the Hawking radiation and thermal noise, talk at KITP seminar, http://online.kitp.ucsb.edu/online/joint98/kitaev/, U.S.A., 12 February 2015.

  4. [4]

    A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, U.S.A., 7 April 2015.

  5. [5]

    A. Kitaev, A simple model of quantum holography (part 2), talk at KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev2/, U.S.A., 27 May 2015.

  6. [6]

    S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev. X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE].

    Article  Google Scholar 

  7. [7]

    J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP 04 (2016) 001 [arXiv:1601.06768] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. [8]

    A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP 07 (2016) 007 [arXiv:1603.06246] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    A. Jevicki and K. Suzuki, Bi-local holography in the SYK model: perturbations, JHEP 11 (2016) 046 [arXiv:1608.07567] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. [11]

    J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106 [arXiv:1503.01409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP 03 (2015) 051 [arXiv:1409.8180] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space, Prog. Theor. Exp. Phys. 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  15. [15]

    K. Jensen, Chaos in AdS 2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    G. Mandal, P. Nayak and S.R. Wadia, Coadjoint orbit action of Virasoro group and two-dimensional quantum gravity dual to SYK/tensor models, arXiv:1702.04266 [INSPIRE].

  17. [17]

    S.R. Das, A. Jevicki and K. Suzuki, Three dimensional view of the SYK/AdS duality, arXiv:1704.07208 [INSPIRE].

  18. [18]

    D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP 02 (2017) 093 [arXiv:1610.01569] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95 (2017) 134302 [arXiv:1610.04619] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    W. Fu, D. Gaiotto, J. Maldacena and S. Sachdev, Supersymmetric Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 026009 [Addendum ibid. D 95 (2017) 069904] [arXiv:1610.08917] [INSPIRE].

  21. [21]

    T. Nishinaka and S. Terashima, A note on Sachdev-Ye-Kitaev like model without random coupling, arXiv:1611.10290 [INSPIRE].

  22. [22]

    T. Li, J. Liu, Y. Xin and Y. Zhou, Supersymmetric SYK model and random matrix theory, JHEP 06 (2017) 111 [arXiv:1702.01738] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    R. Gurau, Quenched equals annealed at leading order in the colored SYK model, arXiv:1702.04228 [INSPIRE].

  24. [24]

    V. Bonzom, L. Lionni and A. Tanasa, Diagrammatics of a colored SYK model and of an SYK-like tensor model, leading and next-to-leading orders, J. Math. Phys. 58 (2017) 052301 [arXiv:1702.06944] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    C. Peng, Vector models and generalized SYK models, JHEP 05 (2017) 129 [arXiv:1704.04223] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP 05 (2017) 125 [arXiv:1609.07832] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Higher dimensional generalizations of the SYK model, JHEP 01 (2017) 138 [arXiv:1610.02422] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    G. Turiaci and H. Verlinde, Towards a 2d QFT analog of the SYK model, arXiv:1701.00528 [INSPIRE].

  29. [29]

    M. Berkooz, P. Narayan, M. Rozali and J. Simón, Comments on the random Thirring model, arXiv:1702.05105 [INSPIRE].

  30. [30]

    Y. Gu, A. Lucas and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys. 2 (2017) 018 [arXiv:1702.08462] [INSPIRE].

    Article  Google Scholar 

  31. [31]

    R. Gurau, Colored group field theory, Commun. Math. Phys. 304 (2011) 69 [arXiv:0907.2582] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    R. Gurau and V. Rivasseau, The 1/N expansion of colored tensor models in arbitrary dimension, Europhys. Lett. 95 (2011) 50004 [arXiv:1101.4182] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    R. Gurau, The complete 1/N expansion of colored tensor models in arbitrary dimension, Annales Henri Poincaré 13 (2012) 399 [arXiv:1102.5759] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. [34]

    V. Bonzom, R. Gurau, A. Riello and V. Rivasseau, Critical behavior of colored tensor models in the large-N limit, Nucl. Phys. B 853 (2011) 174 [arXiv:1105.3122] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. [35]

    R. Gurau and J.P. Ryan, Colored tensor models — a review, SIGMA 8 (2012) 020 [arXiv:1109.4812] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  36. [36]

    R. Gurau, Universality for random tensors, Ann. Inst. H. Poincaré Probab. Statist. 50 (2014) 1474 [arXiv:1111.0519] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    V. Bonzom, R. Gurau and V. Rivasseau, Random tensor models in the large-N limit: uncoloring the colored tensor models, Phys. Rev. D 85 (2012) 084037 [arXiv:1202.3637] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    R. Gurau and G. Schaeffer, Regular colored graphs of positive degree, Ann. Inst. H. Poincaré Comb. Phys. Interact. 3 (2016) 257 [arXiv:1307.5279].

    MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    S. Carrozza and A. Tanasa, O(N ) random tensor models, Lett. Math. Phys. 106 (2016) 1531 [arXiv:1512.06718] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    R. Gurau, The complete 1/N expansion of a SYK-like tensor model, Nucl. Phys. B 916 (2017) 386 [arXiv:1611.04032] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    V. Bonzom and S. Dartois, Blobbed topological recursion for the quartic melonic tensor model, arXiv:1612.04624 [INSPIRE].

  42. [42]

    E. Witten, An SYK-like model without disorder, arXiv:1610.09758 [INSPIRE].

  43. [43]

    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    C. Peng, M. Spradlin and A. Volovich, A supersymmetric SYK-like tensor model, JHEP 05 (2017) 062 [arXiv:1612.03851] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    C. Krishnan, K.V.P. Kumar and S. Sanyal, Random matrices and holographic tensor models, JHEP 06 (2017) 036 [arXiv:1703.08155] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    C. Krishnan, S. Sanyal and P.N. Bala Subramanian, Quantum chaos and holographic tensor models, JHEP 03 (2017) 056 [arXiv:1612.06330] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  47. [47]

    S. Chaudhuri, V.I. Giraldo-Rivera, A. Joseph, R. Loganayagam and J. Yoon, Abelian tensor models on the lattice, arXiv:1705.01930 [INSPIRE].

  48. [48]

    F. Ferrari, The large D limit of planar diagrams, arXiv:1701.01171 [INSPIRE].

  49. [49]

    H. Itoyama, A. Mironov and A. Morozov, Rainbow tensor model with enhanced symmetry and extreme melonic dominance, Phys. Lett. B 771 (2017) 180 [arXiv:1703.04983] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    H. Itoyama, A. Mironov and A. Morozov, Ward identities and combinatorics of rainbow tensor models, JHEP 06 (2017) 115 [arXiv:1704.08648] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    I.R. Klebanov and A.A. Tseytlin, Intersecting M-branes as four-dimensional black holes, Nucl. Phys. B 475 (1996) 179 [hep-th/9604166] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. [52]

    M. Beccaria and A.A. Tseytlin, Partition function of free conformal fields in 3-plet representation, JHEP 05 (2017) 053 [arXiv:1703.04460] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    R. Gurau, The 1/N expansion of colored tensor models, Annales Henri Poincaré 12 (2011) 829 [arXiv:1011.2726] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  54. [54]

    S.A. Hartnoll, Theory of universal incoherent metallic transport, Nature Phys. 11 (2015) 54 [arXiv:1405.3651] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    M. Blake, Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett. 117 (2016) 091601 [arXiv:1603.08510] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    M. Blake, Universal diffusion in incoherent black holes, Phys. Rev. D 94 (2016) 086014 [arXiv:1604.01754] [INSPIRE].

    ADS  Google Scholar 

  57. [57]

    S.-K. Jian and H. Yao, Solvable SYK models in higher dimensions: a new type of many-body localization transition, arXiv:1703.02051 [INSPIRE].

  58. [58]

    C.-M. Jian, Z. Bi and C. Xu, A model for continuous thermal metal to insulator transition, arXiv:1703.07793 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junggi Yoon.

Additional information

ArXiv ePrint: 1705.01554

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayan, P., Yoon, J. SYK-like tensor models on the lattice. J. High Energ. Phys. 2017, 83 (2017). https://doi.org/10.1007/JHEP08(2017)083

Download citation

Keywords

  • 1/N Expansion
  • Field Theories in Lower Dimensions
  • Matrix Models