Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The exceptional story of massive IIA supergravity

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 26 August 2016
  • Volume 2016, article number 154, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The exceptional story of massive IIA supergravity
Download PDF
  • Franz Ciceri1,
  • Adolfo Guarino1 &
  • Gianluca Inverso1 
  • 411 Accesses

  • 57 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

The framework of exceptional field theory is extended by introducing consistent deformations of its generalised Lie derivative. For the first time, massive type IIA super-gravity is reproduced geometrically as a solution of the section constraint. This provides a unified description of all ten- and eleven-dimensional maximal supergravities. The actionof the E7(7) deformed theory is constructed, and reduces to those of exceptional field theory and gauged maximal supergravity in respective limits. The relation of this new framework to other approaches for generating the Romans mass non-geometrically is discussed.

Article PDF

Download to read the full article text

Similar content being viewed by others

Exceptional generalised geometry for massive IIA and consistent reductions

Article Open access 10 August 2016

Generalized IIB supergravity from exceptional field theory

Article Open access 20 March 2017

Fermions and supersymmetry in E6(6) exceptional field theory

Article Open access 05 March 2015
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    ADS  Google Scholar 

  2. O. Hohm and H. Samtleben, Exceptional field theory II: E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

    ADS  Google Scholar 

  3. O. Hohm and H. Samtleben, Exceptional field theory III: E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

    ADS  Google Scholar 

  4. O. Hohm and Y.-N. Wang, Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory, JHEP 04 (2015) 050 [arXiv:1501.01600] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2) × ℝ + exceptional field theory, arXiv:1512.06115 [INSPIRE].

  8. L.J. Romans, Massive N = 2a supergravity in ten-dimensions, Phys. Lett. B 169 (1986) 374 [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Coimbra, C. Strickland-Constable and D. Waldram, E d(d) × ℝ + generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry II: E d(d) × ℝ + and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Baguet, O. Hohm and H. Samtleben, Consistent type IIB reductions to maximal 5D supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. E. Malek and H. Samtleben, Dualising consistent IIA/IIB truncations, JHEP 12 (2015) 029 [arXiv:1510.03433] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. G. Bossard and A. Kleinschmidt, Loops in exceptional field theory, JHEP 01 (2016) 164 [arXiv:1510.07859] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074 [arXiv:1008.1763] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    Article  ADS  Google Scholar 

  17. C.D.A. Blair, E. Malek and J.-H. Park, M-theory and type IIB from a duality manifest action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].

    Article  ADS  Google Scholar 

  18. I. Bandos, On section conditions of E 7(+7) exceptional field theory and superparticle in N = 8 central charge superspace, JHEP 01(2016) 132[arXiv:1512.02287] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. O. Hohm and S.K. Kwak, Massive type II in double field theory, JHEP 11 (2011) 086 [arXiv:1108.4937] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K. Behrndt and M. Cvetič, General N = 1 supersymmetric flux vacua of (massive) type IIA string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. Behrndt and M. Cvetič, General N = 1 supersymmetric fluxes in massive type IIA string theory, Nucl. Phys. B 708 (2005) 45 [hep-th/0407263] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. D. Lüst and D. Tsimpis, Supersymmetric AdS 4 compactifications of IIA supergravity, JHEP 02 (2005) 027 [hep-th/0412250] [INSPIRE].

    Article  Google Scholar 

  23. J.H. Schwarz, Superconformal Chern-Simons theories, JHEP 11 (2004) 078 [hep-th/0411077] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Guarino, D.L. Jafferis and O. Varela, String theory origin of dyonic N = 8 supergravity and its Chern-Simons duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D. Gaiotto and A. Tomasiello, Perturbing gauge/gravity duals by a Romans mass, J. Phys. A 42 (2009) 465205 [arXiv:0904.3959] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  27. A. Guarino and O. Varela, Consistent N = 8 truncation of massive IIA on S 6, JHEP 12 (2015) 020 [arXiv:1509.02526] [INSPIRE].

    Article  ADS  Google Scholar 

  28. A. Guarino and O. Varela, Dyonic ISO(7) supergravity and the duality hierarchy, JHEP 02 (2016) 079 [arXiv:1508.04432] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Dall’Agata and G. Inverso, On the vacua of N = 8 gauged supergravity in 4 dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. G. Dall’Agata, G. Inverso and M. Trigiante, Evidence for a family of SO(8) gauged supergravity theories, Phys. Rev. Lett. 109 (2012) 201301 [arXiv:1209.0760] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Dall’Agata, G. Inverso and A. Marrani, Symplectic deformations of gauged maximal supergravity, JHEP 07 (2014) 133 [arXiv:1405.2437] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. G. Inverso, Electric-magnetic deformations of D = 4 gauged supergravities, JHEP 03 (2016) 138 [arXiv:1512.04500] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions, Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 4 supergravities, JHEP 06 (2007) 049 [arXiv:0705.2101] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  35. B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys. B 716 (2005) 215 [hep-th/0412173] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Bergshoeff, H. Samtleben and E. Sezgin, The gaugings of maximal D = 6 supergravity, JHEP 03 (2008) 068 [arXiv:0712.4277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Samtleben and M. Weidner, The maximal D = 7 supergravities, Nucl. Phys. B 725 (2005) 383 [hep-th/0506237] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. D. Puigdomènech, Embedding tensor approach to maximal D = 8 supergravity, master thesis, http://thep.housing.rug.nl/theses, University of Groningen, Groningen The Netherlands (2008).

  39. J.J. Fernandez-Melgarejo, T. Ortín and E. Torrente-Lujan, The general gaugings of maximal D = 9 supergravity, JHEP 10(2011) 068[arXiv:1106.1760] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. H. Samtleben, Lectures on gauged supergravity and flux compactifications, Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Abou-Zeid, B. de Wit, D. Lüst and H. Nicolai, Space-time supersymmetry, IIA/B duality and M-theory, Phys. Lett. B 466 (1999) 144 [hep-th/9908169] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. O. Hohm and H. Samtleben, Exceptional form of D = 11 supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of non-Abelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  45. Y.-N. Wang, Generalized Cartan calculus in general dimension, JHEP 07 (2015) 114 [arXiv:1504.04780] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. I.A. Bandos, A.J. Nurmagambetov and D.P. Sorokin, Various faces of type IIA supergravity, Nucl. Phys. B 676 (2004) 189 [hep-th/0307153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. H. Godazgar, M. Godazgar and H. Nicolai, Generalised geometry from the ground up, JHEP 02 (2014) 075 [arXiv:1307.8295] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. F. Ciceri, B. de Wit and O. Varela, IIB supergravity and the E 6(6) covariant vector-tensor hierarchy, JHEP 04 (2015) 094 [arXiv:1412.8297] [INSPIRE].

    Article  ADS  Google Scholar 

  49. A. Le Diffon and H. Samtleben, Supergravities without an action: gauging the Trombone, Nucl. Phys. B 811 (2009) 1 [arXiv:0809.5180] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. A. Le Diffon, H. Samtleben and M. Trigiante, N = 8 supergravity with local scaling symmetry, JHEP 04 (2011) 079 [arXiv:1103.2785] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  51. E. Bergshoeff, T. de Wit, U. Gran, R. Linares and D. Roest, (Non)Abelian gauged supergravities in nine-dimensions, JHEP 10 (2002) 061 [hep-th/0209205] [INSPIRE].

  52. H. Nishino and S. Rajpoot, Gauged N = 2 supergravity in nine-dimensions and domain wall solutions, Phys. Lett. B 546 (2002) 261 [hep-th/0207246] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. E. Bergshoeff, M. de Roo, M.B. Green, G. Papadopoulos and P.K. Townsend, Duality of type-II 7 branes and 8 branes, Nucl. Phys. B 470 (1996) 113 [hep-th/9601150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. W.H. Baron, Gaugings from E 7(7) extended geometries, Phys. Rev. D 91 (2015) 024008 [arXiv:1404.7750] [INSPIRE].

    ADS  Google Scholar 

  55. P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. G. Aldazabal, E. Andres, P.G. Camara and M. Graña, U-dual fluxes and generalized geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. C.D.A. Blair and E. Malek, Geometry and fluxes of SL(5) exceptional field theory, JHEP 03 (2015) 144 [arXiv:1412.0635] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  58. P. Meessen and T. Ortín, An SL(2, Z) multiplet of nine-dimensional type-II supergravity theories, Nucl. Phys. B 541 (1999) 195 [hep-th/9806120] [INSPIRE].

  59. G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz invariant actions and duality, JHEP 07 (1998) 017 [hep-th/9806140] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. J. Scherk and J.H. Schwarz, How to get masses from extra dimensions, Nucl. Phys. B 153 (1979) 61 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  61. D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality invariant M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174 [arXiv:1208.0020] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  62. G. Aldazabal, M. Graña, D. Marqués and J.A. Rosabal, Extended geometry and gauged maximal supergravity, JHEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, arXiv:1401.3360 [INSPIRE].

  64. M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. M. Graña and D. Marques, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  67. E.A. Bergshoeff, J. Hartong, O. Hohm, M. Huebscher and T. Ortín, Gauge theories, duality relations and the tensor hierarchy, JHEP 04 (2009) 123 [arXiv:0901.2054] [INSPIRE].

  68. M. Cvetič, H. Lü, C.N. Pope, A. Sadrzadeh and T.A. Tran, S 3 and S 4 reductions of type IIA supergravity, Nucl. Phys. B 590 (2000) 233 [hep-th/0005137] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric E 7(7) exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. E. Musaev and H. Samtleben, Fermions and supersymmetry in E 6(6) exceptional field theory, JHEP 03 (2015) 027 [arXiv:1412.7286] [INSPIRE].

    Article  ADS  Google Scholar 

  71. O. Hohm and S.K. Kwak, Double field theory formulation of heterotic strings, JHEP 06 (2011) 096 [arXiv:1103.2136] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J.A. Rosabal, On the exceptional generalised Lie derivative for d ≥ 7, JHEP 09 (2015) 153 [arXiv:1410.8148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. D. Cassani, O. de Felice, M. Petrini, C. Strickland-Constable and D. Waldram, Exceptional generalised geometry for massive IIA and consistent reductions, arXiv:1605.00563 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef Theory Group, Science Park 105, 1098 XG, Amsterdam, Netherlands

    Franz Ciceri, Adolfo Guarino & Gianluca Inverso

Authors
  1. Franz Ciceri
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Adolfo Guarino
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gianluca Inverso
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Franz Ciceri.

Additional information

ArXiv ePrint: 1604.08602

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciceri, F., Guarino, A. & Inverso, G. The exceptional story of massive IIA supergravity. J. High Energ. Phys. 2016, 154 (2016). https://doi.org/10.1007/JHEP08(2016)154

Download citation

  • Received: 23 May 2016

  • Accepted: 05 August 2016

  • Published: 26 August 2016

  • DOI: https://doi.org/10.1007/JHEP08(2016)154

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Extended Supersymmetry
  • Flux compactifications
  • String Duality
  • Supergravity Models
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature