Generalised boundary terms for higher derivative theories of gravity

  • Ali TeimouriEmail author
  • Spyridon Talaganis
  • James Edholm
  • Anupam Mazumdar
Open Access
Regular Article - Theoretical Physics


In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.


Classical Theories of Gravity Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  3. [3]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1975).zbMATHGoogle Scholar
  4. [4]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M.V. Ostrogradsky, Mémoires sur les équations differentielles relatives au problème des isopérimètres (in French), Mem. Acad. St. Petersbourg VI 4 (1850) 385.Google Scholar
  6. [6]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Biswas, A.S. Koshelev and A. Mazumdar, Gravitational theories with stable (anti-)de Sitter backgrounds, Fundam. Theor. Phys. 183 (2016) 97 [arXiv:1602.08475] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    R.J. Rivers, Lagrangian theory for neutral massive spin-2 fields, Nuovo Cim. 34 (1964) 386.ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Van Nieuwenhuizen, On ghost-free tensor lagrangians and linearized gravitation, Nucl. Phys. B 60 (1973) 478 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity, Phys. Lett. B 97 (1980) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E.T. Tomboulis, Renormalization and asymptotic freedom in quantum gravity, in Quantum theory of gravity, S.M. Christensen ed., (1983), pg. 251 [INSPIRE].
  12. [12]
    E.T. Tomboulis, Superrenormalizable gauge and gravitational theories, hep-th/9702146 [INSPIRE].
  13. [13]
    E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 [arXiv:1507.00981] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    W. Siegel, Stringy gravity at short distances, hep-th/0309093 [INSPIRE].
  15. [15]
    T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Biswas, T. Koivisto and A. Mazumdar, Nonlocal theories of gravity: the flat space propagator, arXiv:1302.0532 [INSPIRE].
  17. [17]
    J. Edholm, A.S. Koshelev and A. Mazumdar, Universality of testing ghost-free gravity, arXiv:1604.01989 [INSPIRE].
  18. [18]
    V.P. Frolov and A. Zelnikov, Head-on collision of ultrarelativistic particles in ghost-free theories of gravity, Phys. Rev. D 93 (2016) 064048 [arXiv:1509.03336] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    V.P. Frolov, Mass-gap for black hole formation in higher derivative and ghost free gravity, Phys. Rev. Lett. 115 (2015) 051102 [arXiv:1505.00492] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V.P. Frolov, A. Zelnikov and T. de Paula Netto, Spherical collapse of small masses in the ghost-free gravity, JHEP 06 (2015) 107 [arXiv:1504.00412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Anselmi, Quantum gravity and renormalization, Mod. Phys. Lett. A 30 (2015) 1540004 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Anselmi, Properties of the classical action of quantum gravity, JHEP 05 (2013) 028 [arXiv:1302.7100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Anselmi, Weighted scale invariant quantum field theories, JHEP 02 (2008) 051 [arXiv:0801.1216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.W. Moffat, Ultraviolet complete quantum gravity, Eur. Phys. J. Plus 126 (2011) 43 [arXiv:1008.2482] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    D. Evens, J.W. Moffat, G. Kleppe and R.P. Woodard, Nonlocal regularizations of gauge theories, Phys. Rev. D 43 (1991) 499 [INSPIRE].ADSGoogle Scholar
  27. [27]
    A.O. Barvinsky and Yu. V. Gusev, New representation of the nonlocal ghost-free gravity theory, Phys. Part. Nucl. 44 (2013) 213 [arXiv:1209.3062] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    A.O. Barvinsky, Aspects of nonlocality in quantum field theory, quantum gravity and cosmology, Mod. Phys. Lett. A 30 (2015) 1540003 [arXiv:1408.6112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Talaganis, T. Biswas and A. Mazumdar, Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, Class. Quant. Grav. 32 (2015) 215017 [arXiv:1412.3467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Talaganis and A. Mazumdar, High-energy scatterings in infinite-derivative field theory and ghost-free gravity, Class. Quant. Grav. 33 (2016) 145005 [arXiv:1603.03440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Ashtekar, Introduction to loop quantum gravity and cosmology, Lect. Notes Phys. 863 (2013) 31 [PoS(QGQGS 2011)001] [arXiv:1201.4598] [INSPIRE].
  32. [32]
    H. Nicolai, K. Peeters and M. Zamaklar, Loop quantum gravity: an outside view, Class. Quant. Grav. 22 (2005) R193 [hep-th/0501114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987) 521 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge Univ. Pr., Cambridge U.K. (1998).Google Scholar
  35. [35]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P.G.O. Freund and M. Olson, Non-archimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B. Dragovich, Zeta strings, hep-th/0703008 [INSPIRE].
  38. [38]
    M.R. Douglas and S.H. Shenker, Strings in less than one-dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    T. Biswas, M. Grisaru and W. Siegel, Linear Regge trajectories from worldsheet lattice parton field theory, Nucl. Phys. B 708 (2005) 317 [hep-th/0409089] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W. Siegel, Introduction to string field theory, hep-th/0107094 [INSPIRE].
  41. [41]
    T. Biswas, T. Koivisto and A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 11 (2010) 008 [arXiv:1005.0590] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Craps, T. De Jonckheere and A.S. Koshelev, Cosmological perturbations in non-local higher-derivative gravity, JCAP 11 (2014) 022 [arXiv:1407.4982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Conroy, A.S. Koshelev and A. Mazumdar, Criteria for resolving the cosmological singularity in infinite derivative gravity, arXiv:1605.02080 [INSPIRE].
  44. [44]
    A. Conroy, A.S. Koshelev and A. Mazumdar, Geodesic completeness and homogeneity condition for cosmic inflation, Phys. Rev. D 90 (2014) 123525 [arXiv:1408.6205] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Biswas, A.S. Koshelev, A. Mazumdar and S. Yu. Vernov, Stable bounce and inflation in non-local higher derivative cosmology, JCAP 08 (2012) 024 [arXiv:1206.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Chialva and A. Mazumdar, Cosmological implications of quantum corrections and higher-derivative extension, Mod. Phys. Lett. A 30 (2015) 1540008 [arXiv:1405.0513] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Biswas and A. Mazumdar, Super-inflation, non-singular bounce and low multipoles, Class. Quant. Grav. 31 (2014) 025019 [arXiv:1304.3648] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    A.S. Koshelev, L. Modesto, L. Rachwal and A.A. Starobinsky, Occurrence of exact R 2 inflation in non-local UV-complete gravity, arXiv:1604.03127 [INSPIRE].
  49. [49]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  50. [50]
    V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
  51. [51]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].
  53. [53]
    A. Conroy, A. Mazumdar and A. Teimouri, Wald entropy for ghost-free, infinite derivative theories of gravity, Phys. Rev. Lett. 114 (2015) 201101 [arXiv:1503.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Conroy, A. Mazumdar, S. Talaganis and A. Teimouri, Nonlocal gravity in D dimensions: propagators, entropy and a bouncing cosmology, Phys. Rev. D 92 (2015) 124051 [arXiv:1509.01247] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    E. Dyer and K. Hinterbichler, Boundary terms, variational principles and higher derivative modified gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    S.W. Hawking, The path-integral approach to quantum gravity, in General relativity, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  57. [57]
    S.W. Hawking and G.T. Horowitz, The gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].
  58. [58]
    J.D. Brown, Black hole entropy and the Hamiltonian formulation of diffeomorphism invariant theories, Phys. Rev. D 52 (1995) 7011 [gr-qc/9506085] [INSPIRE].
  59. [59]
    J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M.S. Madsen and J.D. Barrow, De Sitter ground states and boundary terms in generalized gravity, Nucl. Phys. B 323 (1989) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Guarnizo, L. Castaneda and J.M. Tejeiro, Boundary term in metric f (R) gravity: field equations in the metric formalism, Gen. Rel. Grav. 42 (2010) 2713 [arXiv:1002.0617] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  64. [64]
    N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of f (Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Biswas, A. Conroy, A.S. Koshelev and A. Mazumdar, Generalized ghost-free quadratic curvature gravity, Class. Quant. Grav. 31 (2014) 015022 [Erratum ibid. 31 (2014) 159501] [arXiv:1308.2319] [INSPIRE].
  66. [66]
    L. Smarr and J.W. York, Jr., Kinematical conditions in the construction of space-time, Phys. Rev. D 17 (1978) 2529 [INSPIRE].ADSGoogle Scholar
  67. [67]
    T.W. Baumgarte and S.L. Shapiro, Numerical relativity and compact binaries, Phys. Rept. 376 (2003) 41 [gr-qc/0211028] [INSPIRE].
  68. [68]
    E. Poisson, A relativist’s toolkit, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  69. [69]
    A. Anderson, Y. Choquet-Bruhat and J.W. York, Jr., Einstein’s equations and equivalent hyperbolic dynamical systems, Lect. Notes Phys. 537 (2000) 30 [gr-qc/9907099] [INSPIRE].
  70. [70]
    S.M. Carroll, Lecture notes on general relativity, gr-qc/9712019 [INSPIRE].
  71. [71]
    L.D. Faddeev and R. Jackiw, Hamiltonian reduction of unconstrained and constrained systems, Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A.M. Abrahams and J.W. York, Jr., (3 + 1) general relativity in hyperbolic form, gr-qc/9601031 [INSPIRE].
  73. [73]
    S. Hassani, Mathematical physics: a modern introduction to its foundations, Springer, Switzerland (2013).CrossRefzbMATHGoogle Scholar
  74. [74]
    A. Golovnev, ADM analysis and massive gravity, arXiv:1302.0687 [INSPIRE].
  75. [75]
    Y. Choquet-Bruhat and J.W. York, Jr., Well posed reduced systems for the Einstein equations, gr-qc/9606001 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ali Teimouri
    • 1
    Email author
  • Spyridon Talaganis
    • 1
  • James Edholm
    • 1
  • Anupam Mazumdar
    • 1
    • 2
  1. 1.Consortium for Fundamental PhysicsLancaster UniversityLancasterUK
  2. 2.Kapteyn Astronomical InstituteUniversity of GroningenGroningenNetherlands

Personalised recommendations