Advertisement

Generalised boundary terms for higher derivative theories of gravity

  • Ali Teimouri
  • Spyridon Talaganis
  • James Edholm
  • Anupam Mazumdar
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.

Keywords

Classical Theories of Gravity Differential and Algebraic Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].CrossRefzbMATHGoogle Scholar
  2. [2]
    Virgo and LIGO Scientific collaborations, B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
  3. [3]
    S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge U.K. (1975).zbMATHGoogle Scholar
  4. [4]
    K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M.V. Ostrogradsky, Mémoires sur les équations differentielles relatives au problème des isopérimètres (in French), Mem. Acad. St. Petersbourg VI 4 (1850) 385.Google Scholar
  6. [6]
    T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett. 108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Biswas, A.S. Koshelev and A. Mazumdar, Gravitational theories with stable (anti-)de Sitter backgrounds, Fundam. Theor. Phys. 183 (2016) 97 [arXiv:1602.08475] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    R.J. Rivers, Lagrangian theory for neutral massive spin-2 fields, Nuovo Cim. 34 (1964) 386.ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Van Nieuwenhuizen, On ghost-free tensor lagrangians and linearized gravitation, Nucl. Phys. B 60 (1973) 478 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    E. Tomboulis, Renormalizability and asymptotic freedom in quantum gravity, Phys. Lett. B 97 (1980) 77 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    E.T. Tomboulis, Renormalization and asymptotic freedom in quantum gravity, in Quantum theory of gravity, S.M. Christensen ed., (1983), pg. 251 [INSPIRE].
  12. [12]
    E.T. Tomboulis, Superrenormalizable gauge and gravitational theories, hep-th/9702146 [INSPIRE].
  13. [13]
    E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 [arXiv:1507.00981] [INSPIRE].ADSMathSciNetGoogle Scholar
  14. [14]
    W. Siegel, Stringy gravity at short distances, hep-th/0309093 [INSPIRE].
  15. [15]
    T. Biswas, A. Mazumdar and W. Siegel, Bouncing universes in string-inspired gravity, JCAP 03 (2006) 009 [hep-th/0508194] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    T. Biswas, T. Koivisto and A. Mazumdar, Nonlocal theories of gravity: the flat space propagator, arXiv:1302.0532 [INSPIRE].
  17. [17]
    J. Edholm, A.S. Koshelev and A. Mazumdar, Universality of testing ghost-free gravity, arXiv:1604.01989 [INSPIRE].
  18. [18]
    V.P. Frolov and A. Zelnikov, Head-on collision of ultrarelativistic particles in ghost-free theories of gravity, Phys. Rev. D 93 (2016) 064048 [arXiv:1509.03336] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    V.P. Frolov, Mass-gap for black hole formation in higher derivative and ghost free gravity, Phys. Rev. Lett. 115 (2015) 051102 [arXiv:1505.00492] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    V.P. Frolov, A. Zelnikov and T. de Paula Netto, Spherical collapse of small masses in the ghost-free gravity, JHEP 06 (2015) 107 [arXiv:1504.00412] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    L. Modesto, Super-renormalizable quantum gravity, Phys. Rev. D 86 (2012) 044005 [arXiv:1107.2403] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Anselmi, Quantum gravity and renormalization, Mod. Phys. Lett. A 30 (2015) 1540004 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Anselmi, Properties of the classical action of quantum gravity, JHEP 05 (2013) 028 [arXiv:1302.7100] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    D. Anselmi, Weighted scale invariant quantum field theories, JHEP 02 (2008) 051 [arXiv:0801.1216] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    J.W. Moffat, Ultraviolet complete quantum gravity, Eur. Phys. J. Plus 126 (2011) 43 [arXiv:1008.2482] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    D. Evens, J.W. Moffat, G. Kleppe and R.P. Woodard, Nonlocal regularizations of gauge theories, Phys. Rev. D 43 (1991) 499 [INSPIRE].ADSGoogle Scholar
  27. [27]
    A.O. Barvinsky and Yu. V. Gusev, New representation of the nonlocal ghost-free gravity theory, Phys. Part. Nucl. 44 (2013) 213 [arXiv:1209.3062] [INSPIRE].CrossRefGoogle Scholar
  28. [28]
    A.O. Barvinsky, Aspects of nonlocality in quantum field theory, quantum gravity and cosmology, Mod. Phys. Lett. A 30 (2015) 1540003 [arXiv:1408.6112] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Talaganis, T. Biswas and A. Mazumdar, Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, Class. Quant. Grav. 32 (2015) 215017 [arXiv:1412.3467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Talaganis and A. Mazumdar, High-energy scatterings in infinite-derivative field theory and ghost-free gravity, Class. Quant. Grav. 33 (2016) 145005 [arXiv:1603.03440] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    A. Ashtekar, Introduction to loop quantum gravity and cosmology, Lect. Notes Phys. 863 (2013) 31 [PoS(QGQGS 2011)001] [arXiv:1201.4598] [INSPIRE].
  32. [32]
    H. Nicolai, K. Peeters and M. Zamaklar, Loop quantum gravity: an outside view, Class. Quant. Grav. 22 (2005) R193 [hep-th/0501114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987) 521 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    J. Polchinski, String theory. Vol. 2: superstring theory and beyond, Cambridge Univ. Pr., Cambridge U.K. (1998).Google Scholar
  35. [35]
    E. Witten, Noncommutative geometry and string field theory, Nucl. Phys. B 268 (1986) 253 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    P.G.O. Freund and M. Olson, Non-archimedean strings, Phys. Lett. B 199 (1987) 186 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    B. Dragovich, Zeta strings, hep-th/0703008 [INSPIRE].
  38. [38]
    M.R. Douglas and S.H. Shenker, Strings in less than one-dimension, Nucl. Phys. B 335 (1990) 635 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    T. Biswas, M. Grisaru and W. Siegel, Linear Regge trajectories from worldsheet lattice parton field theory, Nucl. Phys. B 708 (2005) 317 [hep-th/0409089] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    W. Siegel, Introduction to string field theory, hep-th/0107094 [INSPIRE].
  41. [41]
    T. Biswas, T. Koivisto and A. Mazumdar, Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity, JCAP 11 (2010) 008 [arXiv:1005.0590] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    B. Craps, T. De Jonckheere and A.S. Koshelev, Cosmological perturbations in non-local higher-derivative gravity, JCAP 11 (2014) 022 [arXiv:1407.4982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    A. Conroy, A.S. Koshelev and A. Mazumdar, Criteria for resolving the cosmological singularity in infinite derivative gravity, arXiv:1605.02080 [INSPIRE].
  44. [44]
    A. Conroy, A.S. Koshelev and A. Mazumdar, Geodesic completeness and homogeneity condition for cosmic inflation, Phys. Rev. D 90 (2014) 123525 [arXiv:1408.6205] [INSPIRE].ADSGoogle Scholar
  45. [45]
    T. Biswas, A.S. Koshelev, A. Mazumdar and S. Yu. Vernov, Stable bounce and inflation in non-local higher derivative cosmology, JCAP 08 (2012) 024 [arXiv:1206.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    D. Chialva and A. Mazumdar, Cosmological implications of quantum corrections and higher-derivative extension, Mod. Phys. Lett. A 30 (2015) 1540008 [arXiv:1405.0513] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. Biswas and A. Mazumdar, Super-inflation, non-singular bounce and low multipoles, Class. Quant. Grav. 31 (2014) 025019 [arXiv:1304.3648] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    A.S. Koshelev, L. Modesto, L. Rachwal and A.A. Starobinsky, Occurrence of exact R 2 inflation in non-local UV-complete gravity, arXiv:1604.03127 [INSPIRE].
  49. [49]
    V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].
  50. [50]
    V. Iyer and R.M. Wald, A comparison of Noether charge and Euclidean methods for computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430 [gr-qc/9503052] [INSPIRE].
  51. [51]
    T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys. Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    T. Jacobson, G. Kang and R.C. Myers, On black hole entropy, Phys. Rev. D 49 (1994) 6587 [gr-qc/9312023] [INSPIRE].
  53. [53]
    A. Conroy, A. Mazumdar and A. Teimouri, Wald entropy for ghost-free, infinite derivative theories of gravity, Phys. Rev. Lett. 114 (2015) 201101 [arXiv:1503.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    A. Conroy, A. Mazumdar, S. Talaganis and A. Teimouri, Nonlocal gravity in D dimensions: propagators, entropy and a bouncing cosmology, Phys. Rev. D 92 (2015) 124051 [arXiv:1509.01247] [INSPIRE].ADSMathSciNetGoogle Scholar
  55. [55]
    E. Dyer and K. Hinterbichler, Boundary terms, variational principles and higher derivative modified gravity, Phys. Rev. D 79 (2009) 024028 [arXiv:0809.4033] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  56. [56]
    S.W. Hawking, The path-integral approach to quantum gravity, in General relativity, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979).Google Scholar
  57. [57]
    S.W. Hawking and G.T. Horowitz, The gravitational Hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].
  58. [58]
    J.D. Brown, Black hole entropy and the Hamiltonian formulation of diffeomorphism invariant theories, Phys. Rev. D 52 (1995) 7011 [gr-qc/9506085] [INSPIRE].
  59. [59]
    J.W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev. Lett. 28 (1972) 1082 [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].ADSGoogle Scholar
  61. [61]
    M.S. Madsen and J.D. Barrow, De Sitter ground states and boundary terms in generalized gravity, Nucl. Phys. B 323 (1989) 242 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Guarnizo, L. Castaneda and J.M. Tejeiro, Boundary term in metric f (R) gravity: field equations in the metric formalism, Gen. Rel. Grav. 42 (2010) 2713 [arXiv:1002.0617] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  63. [63]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109] [INSPIRE].
  64. [64]
    N. Deruelle, M. Sasaki, Y. Sendouda and D. Yamauchi, Hamiltonian formulation of f (Riemann) theories of gravity, Prog. Theor. Phys. 123 (2010) 169 [arXiv:0908.0679] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    T. Biswas, A. Conroy, A.S. Koshelev and A. Mazumdar, Generalized ghost-free quadratic curvature gravity, Class. Quant. Grav. 31 (2014) 015022 [Erratum ibid. 31 (2014) 159501] [arXiv:1308.2319] [INSPIRE].
  66. [66]
    L. Smarr and J.W. York, Jr., Kinematical conditions in the construction of space-time, Phys. Rev. D 17 (1978) 2529 [INSPIRE].ADSGoogle Scholar
  67. [67]
    T.W. Baumgarte and S.L. Shapiro, Numerical relativity and compact binaries, Phys. Rept. 376 (2003) 41 [gr-qc/0211028] [INSPIRE].
  68. [68]
    E. Poisson, A relativist’s toolkit, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  69. [69]
    A. Anderson, Y. Choquet-Bruhat and J.W. York, Jr., Einstein’s equations and equivalent hyperbolic dynamical systems, Lect. Notes Phys. 537 (2000) 30 [gr-qc/9907099] [INSPIRE].
  70. [70]
    S.M. Carroll, Lecture notes on general relativity, gr-qc/9712019 [INSPIRE].
  71. [71]
    L.D. Faddeev and R. Jackiw, Hamiltonian reduction of unconstrained and constrained systems, Phys. Rev. Lett. 60 (1988) 1692 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A.M. Abrahams and J.W. York, Jr., (3 + 1) general relativity in hyperbolic form, gr-qc/9601031 [INSPIRE].
  73. [73]
    S. Hassani, Mathematical physics: a modern introduction to its foundations, Springer, Switzerland (2013).CrossRefzbMATHGoogle Scholar
  74. [74]
    A. Golovnev, ADM analysis and massive gravity, arXiv:1302.0687 [INSPIRE].
  75. [75]
    Y. Choquet-Bruhat and J.W. York, Jr., Well posed reduced systems for the Einstein equations, gr-qc/9606001 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Ali Teimouri
    • 1
  • Spyridon Talaganis
    • 1
  • James Edholm
    • 1
  • Anupam Mazumdar
    • 1
    • 2
  1. 1.Consortium for Fundamental PhysicsLancaster UniversityLancasterUK
  2. 2.Kapteyn Astronomical InstituteUniversity of GroningenGroningenNetherlands

Personalised recommendations