Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 August 2016
  • Volume 2016, article number 136, (2016)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials
Download PDF
  • Sergio Benvenuti1,2 &
  • Sara Pasquetti3 
  • 398 Accesses

  • 37 Citations

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

D3 branes stretching between webs of (p,q) 5branes provide an interesting class of 3d \( \mathcal{N} \) = 2 theories. For generic pq-webs however the low energy field theory is not known. We use 3d mirror symmetry and Type IIB S-duality to construct Abelian gauge theories corresponding to D3 branes ending on both sides of a pq-web made of many coincident N S5’s intersecting one D5. These theories contain chiral monopole operators in the superpotential and enjoy a non trivial pattern of global symmetry enhancements. In the special case of the pq-web with one D5 and one N S5, the 3d low energy SCFT admits three dual formulations. This triality can be applied locally inside bigger quiver gauge theories. We prove our statements using partial mirror symmetry à la Kapustin-Strassler, showing the equality of the S 3 b partition functions and studying the quantum chiral rings.

Article PDF

Download to read the full article text

Similar content being viewed by others

Brane webs and magnetic quivers for SQCD

Article Open access 30 March 2020

3d \( \mathcal{N} \) = 2 brane webs and quiver matrices

Article Open access 18 July 2022

Brane webs and O5-planes

Article Open access 16 March 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. I. Brunner, A. Hanany, A. Karch and D. Lüst, Brane dynamics and chiral nonchiral transitions, Nucl. Phys. B 528 (1998) 197 [hep-th/9801017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Gaiotto and E. Witten, S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys. 13 (2009) 721 [arXiv:0807.3720] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. M.K. Benna, I.R. Klebanov and T. Klose, Charges of Monopole Operators in Chern-Simons Yang-Mills Theory, JHEP 01 (2010) 110 [arXiv:0906.3008] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D. Bashkirov and A. Kapustin, Supersymmetry enhancement by monopole operators, JHEP 05 (2011) 015 [arXiv:1007.4861] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Y. Imamura and S. Yokoyama, Index for three dimensional superconformal field theories with general R-charge assignments, JHEP 04 (2011) 007 [arXiv:1101.0557] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N} \) = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Three Dimensional Sicilian Theories, JHEP 09 (2014) 185 [arXiv:1403.2384] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

    Article  ADS  Google Scholar 

  20. I. Affleck, J.A. Harvey and E. Witten, Instantons and (Super)Symmetry Breaking in (2+1)-Dimensions, Nucl. Phys. B 206 (1982) 413 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  22. O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities, JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Collinucci, S. Giacomelli, R. Savelli and R. Valandro, T-branes through 3d mirror symmetry, JHEP 07 (2016) 093 [arXiv:1603.00062] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. T. Dimofte and D. Gaiotto, An E7 Surprise, JHEP 10 (2012) 129 [arXiv:1209.1404] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys. 325 (2014) 367 [arXiv:1108.4389] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys. 17 (2013) 975 [arXiv:1112.5179] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N c ) and U(N c ) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Yu. Volkov, Noncommutative hypergeometry, Commun. Math. Phys. 258 (2005) 257 [math/0312084] [INSPIRE].

  32. R. Kashaev, F. Luo and G. Vartanov, A TQFT of Turaev-Viro type on shaped triangulations, Annales Henri Poincaré 17 (2016) 1109 [arXiv:1210.8393] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. V.P. Spiridonov, On the elliptic beta function, Uspekhi Mat. Nauk 56 (2001) 181 [Russian Math. Surveys 56 (2001) 185].

  34. I. Gahramanov and H. Rosengren, A new pentagon identity for the tetrahedron index, JHEP 11 (2013) 128 [arXiv:1309.2195] [INSPIRE].

    Article  ADS  Google Scholar 

  35. F. Benini, S. Benvenuti and S. Pasquetti, to appear.

  36. D. Gaiotto and H.-C. Kim, Surface defects and instanton partition functions, arXiv:1412.2781 [INSPIRE].

  37. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. A. Hanany, C. Hwang, H. Kim, J. Park and R.-K. Seong, Hilbert Series for Theories with Aharony Duals, JHEP 11 (2015) 132 [arXiv:1505.02160] Addendum ibid. 04 (2016) 064 [INSPIRE].

  39. S. Cremonesi, The Hilbert series of 3d \( \mathcal{N} \) = 2 Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. S. Cremonesi, Type IIB construction of flavoured ABJ(M) and fractional M2 branes, JHEP 01 (2011) 076 [arXiv:1007.4562] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A Finite analog of the AGT relation I: F inite W -algebras and quasimaps’ spaces, Commun. Math. Phys. 308 (2011) 457 [arXiv:1008.3655] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  42. H. Nakajima, Handsaw quiver varieties and finite W-algebras, arXiv:1107.5073 [INSPIRE].

  43. M. Aganagic, N. Haouzi and S. Shakirov, A n -Triality, arXiv:1403.3657 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. International School of Advanced Studies (SISSA), via Bonomea 265, 34136, Trieste, Italy

    Sergio Benvenuti

  2. INFN, Sezione di Trieste, Trieste, Italy

    Sergio Benvenuti

  3. Dipartimento di Fisica, Università di Milano-Bicocca, I-20126, Milano, Italy

    Sara Pasquetti

Authors
  1. Sergio Benvenuti
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sara Pasquetti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Sara Pasquetti.

Additional information

ArXiv ePrint: 1605.02675

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benvenuti, S., Pasquetti, S. 3d \( \mathcal{N} \) = 2 mirror symmetry, pq-webs and monopole superpotentials. J. High Energ. Phys. 2016, 136 (2016). https://doi.org/10.1007/JHEP08(2016)136

Download citation

  • Received: 24 May 2016

  • Accepted: 11 August 2016

  • Published: 23 August 2016

  • DOI: https://doi.org/10.1007/JHEP08(2016)136

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • D-branes
  • Supersymmetry and Duality
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature