Advertisement

η and η decays into lepton pairs

  • Pere Masjuan
  • Pablo Sanchez-PuertasEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

In this work, we calculate the branching ratios for the \( \eta \left(\eta^{\prime}\right)\to \overline{\ell}\ell \) decays, where = e,μ. These processes have tiny rates in the Standard Model due to spin flip, loop and electromagnetic suppressions, which could make them sensitive to New Physics effects. In order to provide a reliable input for the Standard Model, we exploit the general analytical properties of the amplitude. For that purpose, we invoke the machinery of Canterbury approximants, which provides a systematic description of the underlying hadronic physics in a data-driven fashion. Given the current experimental discrepancies, we discuss in detail the role of the resonant region and comment on the reliability of χPT calculations. Finally, we discuss the kind of new physics which we think would be relevant to account for them.

Keywords

Phenomenological Models QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Drell, Direct Decay π 0e + e , Nuovo Cim. 11 (1959) 693.ADSCrossRefGoogle Scholar
  2. [2]
    A. Soni, The Structure of Anomalous Lepton Hadron Interactions and π 0e e +, Phys. Lett. B 52 (1974) 332 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P. Herczeg, On the Decay π 0e + e , Phys. Rev. D 16 (1977) 712 [INSPIRE].ADSGoogle Scholar
  4. [4]
    Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV dark matter, Phys. Rev. D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].ADSGoogle Scholar
  5. [5]
    Q. Chang and Y.-D. Yang, Rare decay π 0e + e as a sensitive probe of light CP-odd Higgs in NMSSM, Phys. Lett. B 676 (2009) 88 [arXiv:0808.2933] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  7. [7]
    F. Jegerlehner and A. Nyffeler, The Muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Antognini et al., Proton Structure from the Measurement of 2S − 2P Transition Frequencies of Muonic Hydrogen, Science 339 (2013) 417 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    A.E. Dorokhov and M.A. Ivanov, On mass corrections to the decays P + , JETP Lett. 87 (2008) 531 [arXiv:0803.4493] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    A.E. Dorokhov, M.A. Ivanov and S.G. Kovalenko, Complete structure dependent analysis of the decay P + , Phys. Lett. B 677 (2009) 145 [arXiv:0903.4249] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Masjuan and P. Sanchez-Puertas, Phenomenology of bivariate approximants: the π 0e + e case and its impact on the electron and muon g-2, arXiv:1504.07001 [INSPIRE].
  12. [12]
    P. Vasko and J. Novotny, Two-loop QED radiative corrections to the decay π 0e + e : The virtual corrections and soft-photon bremsstrahlung, JHEP 10 (2011) 122 [arXiv:1106.5956] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Husek, K. Kampf and J. Novotný, Rare decay π 0e + e : on corrections beyond the leading order, Eur. Phys. J. C 74 (2014) 3010 [arXiv:1405.6927] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    T. Husek, K. Kampf and J. Novotny, Radiative corrections to the Dalitz decay π 0e + e γ revisited, Phys. Rev. D 92 (2015) 054027 [arXiv:1504.06178] [INSPIRE].ADSGoogle Scholar
  15. [15]
    HADES collaboration, G. Agakishiev et al., Searching a Dark Photon with HADES, Phys. Lett. B 731 (2014) 265 [arXiv:1311.0216] [INSPIRE].
  16. [16]
    R. Abegg et al., Measurement of the branching ratio for the decay ημ + μ , Phys. Rev. D 50 (1994) 92 [INSPIRE].ADSGoogle Scholar
  17. [17]
    CMD-3 collaboration, R.R. Akhmetshin et al., Search for the process e + e η (958) with the CMD-3 detector, Phys. Lett. B 740 (2015) 273 [arXiv:1409.1664] [INSPIRE].
  18. [18]
    M.N. Achasov et al., Search for the η e + e decay with the SND detector, Phys. Rev. D 91 (2015) 092010 [arXiv:1504.01245] [INSPIRE].ADSGoogle Scholar
  19. [19]
    KTeV collaboration, E. Abouzaid et al., Measurement of the rare decay π 0e + e , Phys. Rev. D 75 (2007) 012004 [hep-ex/0610072] [INSPIRE].
  20. [20]
    HADES collaboration, G. Agakishiev et al., Inclusive dielectron spectra in p+p collisions at 3.5 GeV, Eur. Phys. J. A 48 (2012) 64 [arXiv:1112.3607] [INSPIRE].
  21. [21]
    R.I. Dzhelyadin et al., Study of ημ + μ Decay, Phys. Lett. B 97 (1980) 471 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.V. Vorobev et al., Upper limits of the electron widths of the C-even mesons eta-prime, f 0(975), f 2(1270), f 0(1300), a 0(980), and a 2(1320), Sov. J. Nucl. Phys. 48 (1988) 273 [INSPIRE].Google Scholar
  23. [23]
    N.T. Huong, E. Kou and B. Viaud, Novel approach to measure the leptonic η (′)μ + μ decays via charmed meson decays, arXiv:1606.08195 [INSPIRE].
  24. [24]
    B.-l. Young, Rare Decay Modes of the η Meson, Phys. Rev. 161 (1967) 1620 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    C. Quigg and J. Jackson, Decays of neutral pseudoscalar mesons into lepton pairs, UCRL-18487 (1968).Google Scholar
  26. [26]
    K.S. Babu and E. Ma, Pseudoscalar Electromagnetic Form-factors: Vector Dominance and Quantum Chromodynamics, Phys. Lett. B 119 (1982) 449 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    L. Ametller, L. Bergstrom, A. Bramon and E. Masso, The Quark Triangle: Application to Pion and η Decays, Nucl. Phys. B 228 (1983) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M.D. Scadron and M. Visinescu, The Soft Momentum Quark Model Predictions for the Pseudoscalar Meson Decays Into Lepton Pairs, Phys. Rev. D 29 (1984) 911 [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Margolis, J. Ng, M. Phipps and H.D. Trottier, Quark model calculation of η + to all orders in the bound state relative momentum, Phys. Rev. D 47 (1993) 1942 [hep-ph/9210259] [INSPIRE].
  30. [30]
    M.J. Savage, M.E. Luke and M.B. Wise, The rare decays π 0e + e , ηe + e and ημ + μ in chiral perturbation theory, Phys. Lett. B 291 (1992) 481 [hep-ph/9207233] [INSPIRE].
  31. [31]
    D. Gomez Dumm and A. Pich, Long distance contributions to the K Lμ + μ decay width, Phys. Rev. Lett. 80 (1998) 4633 [hep-ph/9801298] [INSPIRE].
  32. [32]
    L. Ametller, A. Bramon and E. Masso, The π 0e + e and ημ + μ decays revisited, Phys. Rev. D 48 (1993) 3388 [hep-ph/9302304] [INSPIRE].
  33. [33]
    Z.K. Silagadze, On the two-photon contributions to e + e ηγ and e + e η γ, Phys. Rev. D 74 (2006) 054003 [hep-ph/0606284] [INSPIRE].
  34. [34]
    M. Knecht, S. Peris, M. Perrottet and E. de Rafael, Decay of pseudoscalars into lepton pairs and large-N c QCD, Phys. Rev. Lett. 83 (1999) 5230 [hep-ph/9908283] [INSPIRE].
  35. [35]
    A.E. Dorokhov and M.A. Ivanov, Rare decay π 0e + e : Theory confronts KTeV data, Phys. Rev. D 75 (2007) 114007 [arXiv:0704.3498] [INSPIRE].ADSGoogle Scholar
  36. [36]
    A.E. Dorokhov, How the recent BABAR data for Pγγ affect the Standard Model predictions for the rare decays P + , JETP Lett. 91 (2010) 163 [arXiv:0912.5278] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    J.S. Bell and R. Jackiw, A PCAC puzzle: π 0γγ in the σ-model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    G.P. Lepage and S.J. Brodsky, Exclusive Processes in Perturbative Quantum Chromodynamics, Phys. Rev. D 22 (1980) 2157 [INSPIRE].ADSGoogle Scholar
  40. [40]
    G.A. Baker and P. Graves-Morris, Pade Approximants, Encyclopedia of Mathematics and its Applications, Cambridge University Press (1996).Google Scholar
  41. [41]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein, M.B. Voloshin and V.I. Zakharov, Use and Misuse of QCD Sum Rules, Factorization and Related Topics, Nucl. Phys. B 237 (1984) 525 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    L. Bergstrom, E. Masso, L. Ametller and A. Bramon, Q 2 Duality and Rare Pion Decays, Phys. Lett. B 126 (1983) 117 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P. Masjuan, E. Ruiz Arriola and W. Broniowski, Meson dominance of hadron form factors and large-N c phenomenology, Phys. Rev. D 87 (2013) 014005 [arXiv:1210.0760] [INSPIRE].ADSGoogle Scholar
  44. [44]
    P. Masjuan and S. Peris, A rational approach to resonance saturation in large-N c QCD, JHEP 05 (2007) 040 [arXiv:0704.1247] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    P. Masjuan and S. Peris, A rational approximation toVVAAand its \( \mathcal{O}\left({p}^6\right) \) low-energy constant, Phys. Lett. B 663 (2008) 61 [arXiv:0801.3558] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J.S.R. Chisholm, Rational approximants defined from double power series, Math. Comput. 27 (1973) 841.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    C. Alabiso and P. Butera, N-Variable Rational Approximants and Method of Moments, J. Math. Phys. 16 (1975) 840 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    J.S.R. Chisholm and J. McEwan, Rational approximants defined from power series in N variables, Proc. Roy. Soc. Lond. A 336 (1974) 421.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    G. Baker, Essentials of pade approximants, Academic Press (1975), chapter 14.Google Scholar
  50. [50]
    S. Peris, Large-N c QCD and Pade approximant theory, Phys. Rev. D 74 (2006) 054013 [hep-ph/0603190] [INSPIRE].
  51. [51]
    P. Masjuan, γγπ 0 transition form factor at low-energies from a model-independent approach, Phys. Rev. D 86 (2012) 094021 [arXiv:1206.2549] [INSPIRE].
  52. [52]
    P. Masjuan and M. Vanderhaeghen, Ballpark prediction for the hadronic light-by-light contribution to the muon (g − 2)μ, J. Phys. G 42 (2015) 125004 [arXiv:1212.0357] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    P. Masjuan, J.J. Sanz-Cillero and J. Virto, Some Remarks on the Pade Unitarization of Low-Energy Amplitudes, Phys. Lett. B 668 (2008) 14 [arXiv:0805.3291] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Masjuan and S. Peris, Pade Theory applied to the vacuum polarization of a heavy quark, Phys. Lett. B 686 (2010) 307 [arXiv:0903.0294] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    R. Escribano, P. Masjuan and P. Sanchez-Puertas, The η transition form factor from space- and time-like experimental data, Eur. Phys. J. C 75 (2015) 414 [arXiv:1504.07742] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R. Escribano, S. Gonzalez-Solis, P. Masjuan and P. Sanchez-Puertas, The η transition form factor from space- and time-like experimental data, arXiv:1512.07520 [INSPIRE].
  57. [57]
    P. Masjuan, S. Peris and J.J. Sanz-Cillero, Vector Meson Dominance as a first step in a systematic approximation: The Pion vector form-factor, Phys. Rev. D 78 (2008) 074028 [arXiv:0807.4893] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Escribano, P. Masjuan and P. Sanchez-Puertas, η and η transition form factors from rational approximants, Phys. Rev. D 89 (2014) 034014 [arXiv:1307.2061] [INSPIRE].
  59. [59]
    J. Bijnens, K. Kampf and S. Lanz, Leading logarithms in the anomalous sector of two-flavour QCD, Nucl. Phys. B 860 (2012) 245 [arXiv:1201.2608] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  60. [60]
    C.W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.G. Meißner and A. Wirzba, Towards an improved understanding of ηγ γ , arXiv:1509.02194 [INSPIRE].
  61. [61]
    L.G. Landsberg, Electromagnetic Decays of Light Mesons, Phys. Rept. 128 (1985) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    C. Hanhart, A. Kupsc, U.G. Meißner, F. Stollenwerk and A. Wirzba, Dispersive analysis for ηγγ , Eur. Phys. J. C 73 (2013) 2668 [arXiv:1307.5654] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D. Gomez Dumm, A. Pich and J. Portoles, The hadronic off-shell width of meson resonances, Phys. Rev. D 62 (2000) 054014 [hep-ph/0003320] [INSPIRE].
  64. [64]
    D. Gómez Dumm and P. Roig, Dispersive representation of the pion vector form factor in τππν τ decays, Eur. Phys. J. C 73 (2013) 2528 [arXiv:1301.6973] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    P. Masjuan and J.J. Sanz-Cillero, Pade approximants and resonance poles, Eur. Phys. J. C 73 (2013) 2594 [arXiv:1306.6308] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].
  67. [67]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
  68. [68]
    E. Ruiz Arriola and W. Broniowski, Pion transition form factor and distribution amplitudes in large-N c Regge model, Phys. Rev. D 74 (2006) 034008 [hep-ph/0605318] [INSPIRE].
  69. [69]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    L. Arnellos, W.J. Marciano and Z. Parsa, The Decay \( {\pi}^0\to \nu \overline{\nu}\gamma \), Nucl. Phys. B 196 (1982) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    N.T. Huong, E. Kou and B. Moussallam, Single pion contribution to the hyperfine splitting in muonic hydrogen, Phys. Rev. D 93 (2016) 114005 [arXiv:1511.06255] [INSPIRE].ADSGoogle Scholar
  72. [72]
    C. Peset and A. Pineda, The two-photon exchange contribution to muonic hydrogen from chiral perturbation theory, Nucl. Phys. B 887 (2014) 69 [arXiv:1406.4524] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    M.J. Ramsey-Musolf and M.B. Wise, Hadronic light by light contribution to muon g-2 in chiral perturbation theory, Phys. Rev. Lett. 89 (2002) 041601 [hep-ph/0201297] [INSPIRE].
  74. [74]
    P. Masjuan, Overview of the hadronic light-by-light contribution to the muon (g-2), Nucl. Part. Phys. Proc. 260 (2015) 111 [arXiv:1411.6397] [INSPIRE].CrossRefGoogle Scholar
  75. [75]
    A. Crivellin, G. D’Ambrosio, M. Hoferichter and L.C. Tunstall, Violation of lepton flavor and lepton flavor universality in rare kaon decays, Phys. Rev. D 93 (2016) 074038 [arXiv:1601.00970] [INSPIRE].ADSGoogle Scholar
  76. [76]
    B.R. Martin, E. De Rafael and J. Smith, Neutral kaon decays into lepton pairs, Phys. Rev. D 2 (1970) 179 [INSPIRE].ADSGoogle Scholar
  77. [77]
    R. Escribano, P. Masjuan and J.J. Sanz-Cillero, Chiral dynamics predictions for η ηππ, JHEP 05 (2011) 094 [arXiv:1011.5884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  78. [78]
    P. Bickert, P. Masjuan and S. Scherer, η-η mixing in large-N c chiral perturbation theory: discussion, phenomenology and prospects, PoS(CD15)056 [arXiv:1511.01996] [INSPIRE].
  79. [79]
    R. Escribano and J.-M. Frere, Study of the ηη system in the two mixing angle scheme, JHEP 06 (2005) 029 [hep-ph/0501072] [INSPIRE].
  80. [80]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, “Dark” Z implications for Parity Violation, Rare Meson Decays and Higgs Physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].ADSGoogle Scholar
  81. [81]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Muon Anomaly and Dark Parity Violation, Phys. Rev. Lett. 109 (2012) 031802 [arXiv:1205.2709] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    C.E. Carlson and B.C. Rislow, New Physics and the Proton Radius Problem, Phys. Rev. D 86 (2012) 035013 [arXiv:1206.3587] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S.G. Karshenboim, D. McKeen and M. Pospelov, Constraints on muon-specific dark forces, Phys. Rev. D 90 (2014) 073004 [arXiv:1401.6154] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A.V. Radyushkin, Shape of Pion Distribution Amplitude, Phys. Rev. D 80 (2009) 094009 [arXiv:0906.0323] [INSPIRE].ADSGoogle Scholar
  85. [85]
    P. Masjuan, E. Ruiz Arriola and W. Broniowski, Systematics of radial and angular-momentum Regge trajectories of light non-strange \( q\overline{q} \) -states, Phys. Rev. D 85 (2012) 094006 [arXiv:1203.4782] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence and Institut für KernphysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations