Advertisement

Kink excitation spectra in the (1+1)-dimensional φ8 model

  • Vakhid A. Gani
  • Vadim Lensky
  • Mariya A. Lizunova
Open Access
Regular Article - Theoretical Physics

Abstract

We study excitation spectra of BPS-saturated topological solutions — the kinks — of the φ8 scalar field model in (1 + 1) dimensions, for three different choices of the model parameters. We demonstrate that some of these kinks have a vibrational mode, apart from the trivial zero (translational) excitation. One of the considered kinks is shown to have three vibrational modes. We perform a numerical calculation of the kink-kink scattering in one of the considered variants of the φ8 model, and find the critical collision velocity vcr that separates the different collision regimes: inelastic bounce of the kinks at vinvcr, and capture at vin < vcr. We also observe escape windows at some values of vin < vcr where the kinks escape to infinity after bouncing off each other two or more times. We analyse the features of these windows and discuss their relation to the resonant energy exchange between the translational and the vibrational excitations of the colliding kinks.

Keywords

Field Theories in Lower Dimensions Solitons Monopoles and Instantons Effective field theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, Cambridge U.K. (2000).zbMATHGoogle Scholar
  2. [2]
    N. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004).CrossRefzbMATHGoogle Scholar
  3. [3]
    T.I. Belova and A.E. Kudryavtsev, Solitons and their interactions in classical field theory, Phys. Usp. 40 (1997) 359 [Usp. Fiz. Nauk 167 (1997) 377].Google Scholar
  4. [4]
    G.L. Alfimov, A.S. Malishevskii and E.V. Medvedeva, Discrete set of kink velocities in Josephson structures: the nonlocal double sine-Gordon model, Physica D 282 (2014) 16.ADSMathSciNetzbMATHGoogle Scholar
  5. [5]
    P. Ahlqvist, K. Eckerle and B. Greene, Kink collisions in curved field space, JHEP 04 (2015) 059 [arXiv:1411.4631] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    E. Greenwood, E. Halstead, R. Poltis and D. Stojkovic, Electroweak vacua, collider phenomenology, and possible connection with dark energy, Phys. Rev. D 79 (2009) 103003 [arXiv:0810.5343] [INSPIRE].ADSGoogle Scholar
  7. [7]
    R. Poltis, Gravity waves seeded by turbulence and magnetic fields from a first order phase transition with non-renormalizable electroweak vacua, arXiv:1201.6362 [INSPIRE].
  8. [8]
    E. Braaten and L. Carson, Deuteron as a toroidal Skyrmion, Phys. Rev. D 38 (1988) 3525 [INSPIRE].ADSGoogle Scholar
  9. [9]
    D. Foster and N.S. Manton, Scattering of nucleons in the classical Skyrme model, arXiv:1505.06843 [INSPIRE].
  10. [10]
    D. Foster and S. Krusch, Scattering of Skyrmions, Nucl. Phys. B 897 (2015) 697 [arXiv:1412.8719] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  11. [11]
    M.B. Hindmarsh and T.W.B. Kibble, Cosmic strings, Rept. Prog. Phys. 58 (1995) 477 [hep-ph/9411342] [INSPIRE].
  12. [12]
    E.J. Copeland and T.W.B. Kibble, Cosmic strings and superstrings, Proc. Roy. Soc. Lond. A 466 (2010) 623 [arXiv:0911.1345] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Quandt, N. Graham and H. Weigel, Quantum stabilization of a closed Nielsen-Olesen string, Phys. Rev. D 87 (2013) 085013 [arXiv:1303.0178] [INSPIRE].ADSGoogle Scholar
  14. [14]
    O. Schroeder, N. Graham, M. Quandt and H. Weigel, Quantum stabilization of Z-strings, a status report on D = 3 + 1 dimensions, J. Phys. A 41 (2008) 164049 [arXiv:0710.4386] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    H. Weigel, M. Quandt and N. Graham, Cosmic strings stabilized by fermion fluctuations, Int. J. Mod. Phys. A 27 (2012) 1260016 [arXiv:1111.4863] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    R.V. Palvelev, Scattering of vortices in the abelian Higgs model, Theor. Math. Phys. 156 (2008) 1028 [Teor. Mat. Fiz. 156 (2008) 77] [INSPIRE].
  17. [17]
    J. Dziarmaga, More on scattering of Chern-Simons vortices, Phys. Rev. D 51 (1995) 7052 [hep-th/9412180] [INSPIRE].ADSGoogle Scholar
  18. [18]
    E. Myers, C. Rebbi and R. Strilka, Study of the interaction and scattering of vortices in the Abelian Higgs (or Ginzburg-Landau) model, Phys. Rev. D 45 (1992) 1355 [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    P.M. Sutcliffe, BPS monopoles, Int. J. Mod. Phys. A 12 (1997) 4663 [hep-th/9707009] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R.S. Ward, Nontrivial scattering of localized solitons in a (2 + 1)−dimensional integrable system, Phys. Lett. A 208 (1995) 203.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    L.P. Pitaevskii, On the momentum of solitons and vortex rings in a superfluid, JETP 119 (2014) 1097 [Zh. Eksp. Teor. Fiz. 146 (2014) 1252].Google Scholar
  22. [22]
    A.Y. Loginov, Rotating skyrmions of the (2 + 1)-dimensional Skyrme gauge model with a Chern-Simons term, JETP 118 (2014) 217 [Zh. Eksp. Teor. Fiz. 145 (2014) 250].Google Scholar
  23. [23]
    A.Y. Loginov, Bound fermion states in the field of a soliton of the nonlinear O(3) σ model, JETP Lett. 100 (2014) 346 [Pisma Zh. Eksp. Teor. Fiz. 100 (2014) 385] [INSPIRE].
  24. [24]
    S.W. Goatham, L.E. Mannering, R. Hann and S. Krusch, Dynamics of multi-kinks in the presence of wells and barriers, Acta Phys. Polon. B 42 (2011) 2087 [arXiv:1007.2641] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    S.P. Popov, Influence of dislocations on kink solutions of the double sine-Gordon equation, Comput. Math. Math. Phys. 53 (2013) 1891 [Zh. Vychisl. Mat. Mat. Fiz. 53 (2013) 2072].Google Scholar
  26. [26]
    S.P. Popov, Interactions of breathers and kink pairs of the double sine-Gordon equation, Comput. Math. Math. Phys. 54 (2014) 1876 [Zh. Vychisl. Mat. Mat. Fiz. 54 (2014) 1954].Google Scholar
  27. [27]
    A.M. Gumerov, E.G. Ekomasov, F.K. Zakir’yanov and R.V. Kudryavtsev, Structure and properties of four-kink multisolitons of the sine-Gordon equation, Comput. Math. Math. Phys. 54 (2014) 491 [Zh. Vychisl. Mat. Mat. Fiz. 54 (2014) 481].Google Scholar
  28. [28]
    D. Saadatmand, S.V. Dmitriev, D.I. Borisov and P.G. Kevrekidis, Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect, Phys. Rev. E 90 (2014) 052902 [arXiv:1408.2358].ADSGoogle Scholar
  29. [29]
    D. Saadatmand et al., The effect of the ϕ 4 kinks internal mode during scattering on PT-symmetric defect, JETP Lett. 101 (2015) 497 [Pisma Zh. Eksp. Teor. Fiz. 101 (2015) 550].Google Scholar
  30. [30]
    D. Saadatmand et al., Kink scattering from a parity-time-symmetric defect in the ϕ 4 model, Commun. Nonlinear Sci. Numer. Simulat. 29 (2015) 267 [arXiv:1411.5857].MathSciNetCrossRefGoogle Scholar
  31. [31]
    Z. Fei, Y.S. Kivshar and L. Vazquez, Resonant kink-impurity interactions in the sine-Gordon model, Phys. Rev. A 45 (1992) 6019.ADSGoogle Scholar
  32. [32]
    T.I. Belova and A.E. Kudryavtsev, Soliton interaction with an impurity in the λφ 24 theory, JETP 81 (1995) 817 [Zh. Eksp. Teor. Fiz. 108 (1995) 1489].Google Scholar
  33. [33]
    T.S. Mendonça and H.P. de Oliveira, The collision of two-kinks defects, arXiv:1502.03870 [INSPIRE].
  34. [34]
    T.S. Mendonça and H.P. de Oliveira, A note about a new class of two-kinks, JHEP 06 (2015) 133 [arXiv:1504.07315] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M.A. Lohe, Soliton structures in P (φ)2, Phys. Rev. D 20 (1979) 3120 [INSPIRE].ADSGoogle Scholar
  36. [36]
    S.V. Pavlov, M.L. Akimov, Phenomenological theory of isomorphous phase transitions, Crystall. Rep. 44 (1999) 297.ADSGoogle Scholar
  37. [37]
    E.B. Bogomolny, Stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861].Google Scholar
  38. [38]
    M.K. Prasad and C.M. Sommerfield, Exact classical solution for thet Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35 (1975) 760 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Khare, I.C. Christov and A. Saxena, Successive phase transitions and kink solutions in ϕ 8 , ϕ 10 and ϕ 12 field theories, Phys. Rev. E 90 (2014) 023208 [arXiv:1402.6766] [INSPIRE].ADSGoogle Scholar
  40. [40]
    P. Dorey, K. Mersh, T. Romanczukiewicz and Y. Shnir, Kink-antikink collisions in the ϕ 6 model, Phys. Rev. Lett. 107 (2011) 091602 [arXiv:1101.5951] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    V.A. Gani and A.E. Kudryavtsev, Kink-antikink interactions in the double sine-Gordon equation and the problem of resonance frequencies, Phys. Rev. E 60 (1999) 3305 [cond-mat/9809015] [INSPIRE].
  42. [42]
    D. Campbell, M. Peyrard and P. Sodano, Kink-antikink interactions in the double sine-Gordon equation, Physica D 19 (1986) 165.ADSMathSciNetGoogle Scholar
  43. [43]
    M. Peyrard and D. Campbell, Kink-antikink interactions in a modified sine-Gordon model, Physica D 9 (1983) 33.ADSGoogle Scholar
  44. [44]
    V.A. Gani, A.E. Kudryavtsev and M.A. Lizunova, Kink interactions in the (1 + 1)-dimensional ϕ 6 model, Phys. Rev. D 89 (2014) 125009 [arXiv:1402.5903] [INSPIRE].ADSGoogle Scholar
  45. [45]
    A.E. Kudryavtsev, Solitonlike solutions for a Higgs scalar field, JETP Lett. 22 (1975) 82 [Pisma Zh. Eksp. Teor. Fiz. 22 (1975) 178].Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Vakhid A. Gani
    • 1
    • 2
  • Vadim Lensky
    • 2
    • 3
  • Mariya A. Lizunova
    • 2
    • 4
  1. 1.Department of MathematicsNational Research Nuclear University, MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.Theory DepartmentNational Research Center Kurchatov Institute, Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Department of Elementary Particle PhysicsNational Research Nuclear University, MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Department of Theoretical Nuclear PhysicsNational Research Nuclear University, MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations