Vacuum metastability with black holes

Abstract

We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

  2. [2]

    CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

  3. [3]

    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    A. Gorsky, A. Mironov, A. Morozov and T.N. Tomaras, Is the standard model saved asymptotically by conformal symmetry?, J. Exp. Theor. Phys. 120 (2015) 344 [arXiv:1409.0492] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    F. Bezrukov and M. Shaposhnikov, Why should we care about the top quark Yukawa coupling?, J. Exp. Theor. Phys. 120 (2015) 335 [arXiv:1411.1923] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    J. Ellis, Discrete glimpses of the physics landscape after the Higgs discovery, J. Phys. Conf. Ser. 631 (2015) 012001 [arXiv:1501.05418] [INSPIRE].

    Article  Google Scholar 

  7. [7]

    K. Blum, R.T. D’Agnolo and J. Fan, Vacuum stability bounds on Higgs coupling deviations in the absence of new bosons, JHEP 03 (2015) 166 [arXiv:1502.01045] [INSPIRE].

    Article  Google Scholar 

  8. [8]

    M.E. Bracco, G. Krein and M. Nielsen, Quark meson coupling model with constituent quarks: exchange and pionic effects, Phys. Lett. B 432 (1998) 258 [nucl-th/9805019] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Bounds on the fermions and Higgs boson masses in grand unified theories, Nucl. Phys. B 158 (1979) 295 [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    M.S. Turner and F. Wilczek, Is our vacuum metastable, Nature D 79 (1982) 633.

    ADS  Article  Google Scholar 

  11. [11]

    M. Lindner, M. Sher and H.W. Zaglauer, Probing vacuum stability bounds at the Fermilab collider, Phys. Lett. B 228 (1989) 139 [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273 [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  14. [14]

    J.R. Espinosa, G.F. Giudice and A. Riotto, Cosmological implications of the Higgs mass measurement, JCAP 05 (2008) 002 [arXiv:0710.2484] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    G. Isidori, V.S. Rychkov, A. Strumia and N. Tetradis, Gravitational corrections to standard model vacuum decay, Phys. Rev. D 77 (2008) 025034 [arXiv:0712.0242] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Riotto and A. Strumia, Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    S.R. Coleman, The fate of the false vacuum. 1. Semiclassical theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

  18. [18]

    C.G. Callan Jr. and S.R. Coleman, The fate of the false vacuum. 2. First quantum corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    I. Yu. Kobzarev, L.B. Okun and M.B. Voloshin, Bubbles in metastable vacuum, Sov. J. Nucl. Phys. 20 (1975) 644 [INSPIRE].

  21. [21]

    R. Gregory, I.G. Moss and B. Withers, Black holes as bubble nucleation sites, JHEP 03 (2014) 081 [arXiv:1401.0017] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    W.A. Hiscock, Can black holes nucleate vacuum phase transitions?, Phys. Rev. D 35 (1987) 1161 [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    V.A. Berezin, V.A. Kuzmin and I.I. Tkachev, O(3) invariant tunneling in general relativity, Phys. Lett. B 207 (1988) 397 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    M. Sasaki and D.-h. Yeom, Thin-shell bubbles and information loss problem in Anti de Sitter background, JHEP 12 (2014) 155 [arXiv:1404.1565] [INSPIRE].

  25. [25]

    A. Shkerin and S. Sibiryakov, On stability of electroweak vacuum during inflation, Phys. Lett. B 746 (2015) 257 [arXiv:1503.02586] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  26. [26]

    P. Burda, R. Gregory and I. Moss, Gravity and the stability of the Higgs vacuum, Phys. Rev. Lett. 115 (2015) 071303 [arXiv:1501.04937] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    F. Mellor and I. Moss, Black holes and quantum wormholes, Phys. Lett. B 222 (1989) 361 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    F. Mellor and I. Moss, Black holes and gravitational instantons, Class. Quant. Grav. 6 (1989) 1379 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    S.W. Hawking and N. Turok, Open inflation without false vacua, Phys. Lett. B 425 (1998) 25 [hep-th/9802030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    N. Turok and S.W. Hawking, Open inflation, the four form and the cosmological constant, Phys. Lett. B 432 (1998) 271 [hep-th/9803156] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. [31]

    A.R. Brown and E.J. Weinberg, Thermal derivation of the Coleman-De Luccia tunneling prescription, Phys. Rev. D 76 (2007) 064003 [arXiv:0706.1573] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    I.G. Moss, Black hole bubbles, Phys. Rev. D 32 (1985) 1333 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. [33]

    C. Cheung and S. Leichenauer, Limits on new physics from black holes, Phys. Rev. D 89 (2014) 104035 [arXiv:1309.0530] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    C. Ford, D.R.T. Jones, P.W. Stephenson and M.B. Einhorn, The effective potential and the renormalization group, Nucl. Phys. B 395 (1993) 17 [hep-lat/9210033] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    K.G. Chetyrkin and M.F. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    B. Bergerhoff, M. Lindner and M. Weiser, Dynamics of metastable vacua in the early universe, Phys. Lett. B 469 (1999) 61 [hep-ph/9909261] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    E. Greenwood, E. Halstead, R. Poltis and D. Stojkovic, Dark energy, the electroweak vacua and collider phenomenology, Phys. Rev. D 79 (2009) 103003 [arXiv:0810.5343] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    V. Branchina and E. Messina, Stability, Higgs boson mass and new physics, Phys. Rev. Lett. 111 (2013) 241801 [arXiv:1307.5193] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    V. Branchina, E. Messina and M. Sher, Lifetime of the electroweak vacuum and sensitivity to Planck scale physics, Phys. Rev. D 91 (2015) 013003 [arXiv:1408.5302] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    A. Eichhorn, H. Gies, J. Jaeckel, T. Plehn, M.M. Scherer and R. Sondenheimer, The Higgs mass and the scale of new physics, JHEP 04 (2015) 022 [arXiv:1501.02812] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    F. Loebbert and J. Plefka, Quantum gravitational contributions to the standard model effective potential and vacuum stability, arXiv:1502.03093 [INSPIRE].

  43. [43]

    Z. Lalak, M. Lewicki and P. Olszewski, Higher-order scalar interactions and SM vacuum stability, JHEP 05 (2014) 119 [arXiv:1402.3826] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44 (1966) 4349.

    Google Scholar 

  45. [45]

    P. Bowcock, C. Charmousis and R. Gregory, General brane cosmologies and their global space-time structure, Class. Quant. Grav. 17 (2000) 4745 [hep-th/0007177] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  46. [46]

    R. Gregory and A. Padilla, Nested brane worlds and strong brane gravity, Phys. Rev. D 65 (2002) 084013 [hep-th/0104262] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    A. Aguirre and M.C. Johnson, Dynamics and instability of false vacuum bubbles, Phys. Rev. D 72 (2005) 103525 [gr-qc/0508093] [INSPIRE].

    ADS  Google Scholar 

  48. [48]

    A. Aguirre and M.C. Johnson, Two tunnels to inflation, Phys. Rev. D 73 (2006) 123529 [gr-qc/0512034] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev. D 15 (1977) 2752 [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. [51]

    F.A. Bais and R.J. Russell, Magnetic monopole solution of nonabelian gauge theory in curved space-time, Phys. Rev. D 11 (1975) 2692 [Erratum ibid. D 12 (1975) 3368] [INSPIRE].

  52. [52]

    Y.M. Cho and P.G.O. Freund, Gravitatingt Hooft monopoles, Phys. Rev. D 12 (1975) 1588 [Erratum ibid. D 13 (1976) 531] [INSPIRE].

  53. [53]

    G.W. Gibbons, Vacuum polarization and the spontaneous loss of charge by black holes, Commun. Math. Phys. 44 (1975) 245.

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    B.J. Carr and S.W. Hawking, Black holes in the early universe, Mon. Not. Roy. Astron. Soc. 168 (1974) 399 [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    D.N. Page, Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole, Phys. Rev. D 13 (1976) 198 [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  57. [57]

    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  58. [58]

    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    S. Dimopoulos and G.L. Landsberg, Black holes at the LHC, Phys. Rev. Lett. 87 (2001) 161602 [hep-ph/0106295] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    S.B. Giddings and S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics, Phys. Rev. D 65 (2002) 056010 [hep-ph/0106219] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    P. Kanti and E. Winstanley, Hawking radiation from higher-dimensional black holes, Fundam. Theor. Phys. 178 (2015) 229 [arXiv:1402.3952] [INSPIRE].

    MathSciNet  Google Scholar 

  63. [63]

    R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172 (1986) 304 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. [64]

    P. Kanti, Black holes in theories with large extra dimensions: a review, Int. J. Mod. Phys. A 19 (2004) 4899 [hep-ph/0402168] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. [65]

    R. Gregory, Braneworld black holes, Lect. Notes Phys. 769 (2009) 259 [arXiv:0804.2595] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  66. [66]

    N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Black holes on the brane, Phys. Lett. B 487 (2000) 1 [hep-th/0003061] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  67. [67]

    S.W. Hawking and G.T. Horowitz, The gravitational hamiltonian, action, entropy and surface terms, Class. Quant. Grav. 13 (1996) 1487 [gr-qc/9501014] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  68. [68]

    R. Gregory and A. Padilla, Brane world instantons, Class. Quant. Grav. 19 (2002) 279 [hep-th/0107108] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  69. [69]

    R. Emparan, G.T. Horowitz and R.C. Myers, Black holes radiate mainly on the brane, Phys. Rev. Lett. 85 (2000) 499 [hep-th/0003118] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  70. [70]

    C.M. Harris and P. Kanti, Hawking radiation from a (4 + n)-dimensional black hole: exact results for the Schwarzschild phase, JHEP 10 (2003) 014 [hep-ph/0309054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruth Gregory.

Additional information

ArXiv ePrint: 1503.07331

On leave of absence from ITEP, Moscow. (Philipp Burda)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burda, P., Gregory, R. & Moss, I.G. Vacuum metastability with black holes. J. High Energ. Phys. 2015, 114 (2015). https://doi.org/10.1007/JHEP08(2015)114

Download citation

Keywords

  • Solitons Monopoles and Instantons
  • Black Holes