Abstract
We present and utilize a simple formalism for the smooth creation of boundary conditions within relativistic quantum field theory. We consider a massless scalar field in (1 + 1)-dimensional flat spacetime and imagine smoothly transitioning from there being no boundary condition to there being a two-sided Dirichlet mirror. The act of doing this, expectantly, generates a flux of real quanta that emanates from the mirror as it is being created. We show that the local stress-energy tensor of the flux is finite only if an infrared cutoff is introduced, no matter how slowly the mirror is created, in agreement with the perturbative results of Obadia and Parentani. In the limit of instaneous mirror creation the total energy injected into the field becomes ultraviolet divergent, but the response of an Unruh-DeWitt particle detector passing through the infinite burst of energy nevertheless remains finite. Implications for vacuum entanglement extraction and for black hole firewalls are discussed.
Article PDF
References
N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1982).
G. Moore, Quantum theory of electromagnetic field in a variable-length one-dimensional cavity, J. Math. Phys. 11 (1970) 2679 [INSPIRE].
C.M. Wilson et al., Observation of the dynamical Casimir effect in a superconducting circuit, Nature 479 (2011) 376 [arXiv:1105.4714].
M. Ahmadi, D.E. Bruschi and I. Fuentes, Quantum metrology for relativistic quantum fields, Phys. Rev. D 89 (2014) 065028 [arXiv:1312.5707] [INSPIRE].
G. Benenti, A. D’Arrigo, S. Siccardi and G. Strini, Dynamical Casimir Effect in Quantum Information Processing, Phys. Rev. D 90 (2014) 052313 [arXiv:1407.7567].
E.G. Brown et al., Quantum seismology, New J. Phys. 16 (2014) 105020 [arXiv:1407.0071].
S.R. Hastings, M.J.A. de Dood, H. Kim, W. Marshall, H.S. Eisenberg and D. Bouwmeester, Ultrafast optical response of a high-reflectivity GaAs/AlAs Bragg mirror, Appl. Phys. Lett. 86 (2005) 031109 [cond-mat/0411312].
W.G. Unruh, Firewalls — A gravitational perspective, lecture at RQIN-2014, Seoul, Korea (2014).
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
L. Susskind, Black Hole Complementarity and the Harlow-Hayden Conjecture, arXiv:1301.4505 [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
D.N. Page, Excluding Black Hole Firewalls with Extreme Cosmic Censorship, JCAP 06 (2014) 051 [arXiv:1306.0562] [INSPIRE].
A. Almheiri and J. Sully, An Uneventful Horizon in Two Dimensions, JHEP 02 (2014) 108 [arXiv:1307.8149] [INSPIRE].
M. Hotta, J. Matsumoto and K. Funo, Black Hole Firewalls Require Huge Energy of Measurement, Phys. Rev. D 89 (2014) 124023 [arXiv:1306.5057] [INSPIRE].
D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, arXiv:1409.1231 [INSPIRE].
S.L. Braunstein, S. Pirandola and K. Życzkowski, Better Late than Never: Information Retrieval from Black Holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].
S.D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].
J. Hutchinson and D. Stojkovic, Icezones instead of firewalls: extended entanglement beyond the event horizon and unitary evaporation of a black hole, arXiv:1307.5861 [INSPIRE].
J. Louko, Unruh-DeWitt detector response across a Rindler firewall is finite, JHEP 09 (2014) 142 [arXiv:1407.6299] [INSPIRE].
E. Martín-Martínez and J. Louko, (1+1)D Calculation provides evidence that quantum entanglement survives a firewall, Phys. Rev. Lett. 115 (2015) 031301 [arXiv:1502.07749] [INSPIRE].
E.G. Brown, M. del Rey, H. Westman, J. León and A. Dragan, What does it mean for half of an empty cavity to be full?, Phys. Rev. D 91 (2015) 016005 [arXiv:1409.4203] [INSPIRE].
C.T. Asplund and A. Bernamonti, Mutual information after a local quench in conformal field theory, Phys. Rev. D 89 (2014) 066015 [arXiv:1311.4173] [INSPIRE].
C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic Entanglement Entropy from 2d CFT: Heavy States and Local Quenches, JHEP 02 (2015) 171 [arXiv:1410.1392] [INSPIRE].
M. Reed and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic, New York U.S.A. (1975).
J. Blank, P. Exner and M. Havlíček, Hilbert Space Operators in Quantum Physics, 2nd edition, Springer, New York U.S.A. (2008).
G. Bonneau, J. Faraut and G. Valent, Selfadjoint extensions of operators and the teaching of quantum mechanics, Am. J. Phys. 69 (2001) 322 [quant-ph/0103153] [INSPIRE].
A. Anderson and B.S. DeWitt, Does the Topology of Space Fluctuate?, Found. Phys. 16 (1986) 91 [INSPIRE].
C.A. Manogue, E. Copeland and T. Dray, The trousers problem revisited, Pramana 30 (1988) 279.
M.-T. Jaekel and S. Reynaud, Quantum fluctuations of mass for a mirror in vacuum, Phys. Lett. A 180 (1993) 9 [quant-ph/9801073] [INSPIRE].
A.P. Balachandran, G. Bimonte, G. Marmo and A. Simoni, Topology change and quantum physics, Nucl. Phys. B 446 (1995) 299 [gr-qc/9503046] [INSPIRE].
D. Marolf, Interpolating between topologies: Casimir energies, Phys. Lett. B 392 (1997) 287 [gr-qc/9602036] [INSPIRE].
N. Obadia and R. Parentani, Notes on moving mirrors, Phys. Rev. D 64 (2001) 044019 [gr-qc/0103061] [INSPIRE].
J.R. Johansson, G. Johansson, C.M. Wilson and F. Nori, Dynamical Casimir effect in superconducting microwave circuits, Phys. Rev. A 82 (2010) 052509.
H.O. Silva and C. Farina, A Simple model for the dynamical Casimir effect for a static mirror with time-dependent properties, Phys. Rev. D 84 (2011) 045003 [arXiv:1102.2238] [INSPIRE].
C. Farina, H.O. Silva, A.L.C. Rego and D.T. Alves, Time-dependent Robin boundary conditions in the dynamical Casimir effect, Int. J. Mod. Phys. Conf. Ser. 14 (2012) 306 [arXiv:1201.3846] [INSPIRE].
A.L.C. Rego, J.P.d.S. Alves, D.T. Alves and C. Farina, Relativistic bands in the spectrum of created particles via the dynamical Casimir effect, Phys. Rev. A 88 (2013) 032515 [arXiv:1309.3159].
A.L.C. Rego, C. Farina, H.O. Silva and D.T. Alves, New signatures of the dynamical Casimir effect in a superconducting circuit, Phys. Rev. D 90 (2014) 025003 [arXiv:1405.3720] [INSPIRE].
J. Doukas and J. Louko, Superconducting circuit boundary conditions beyond the dynamical Casimir effect, Phys. Rev. D 91 (2015) 044010 [arXiv:1411.2948] [INSPIRE].
W.G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14 (1976) 870 [INSPIRE].
B.S. DeWitt, Quantum gravity: the new synthesis, in General Relativity: an Einstein centenary survey, edited by S.W. Hawking and W. Israel, Cambridge University Press, Cambridge U.K. (1979).
D.J. Raine, D.W. Sciama and P.G. Grove, Does an accelerated oscillator radiate?, Proc. Roy. Soc. A 435 (1991) 205.
A. Raval, B.L. Hu and J. Anglin, Stochastic theory of accelerated detectors in a quantum field, Phys. Rev. D 53 (1996) 7003 [gr-qc/9510002] [INSPIRE].
P.C.W. Davies and A.C. Ottewill, Detection of negative energy: 4-dimensional examples, Phys. Rev. D 65 (2002) 104014 [gr-qc/0203003] [INSPIRE].
Q. Wang and W.G. Unruh, Motion of a mirror under infinitely fluctuating quantum vacuum stress, Phys. Rev. D 89 (2014) 085009 [arXiv:1312.4591] [INSPIRE].
E. Martín-Martínez and J. Louko, Particle detectors and the zero mode of a quantum field, Phys. Rev. D 90 (2014) 024015 [arXiv:1404.5621] [INSPIRE].
B.A. Juárez-Aubry and J. Louko, Onset and decay of the 1 + 1 Hawking-Unruh effect: what the derivative-coupling detector saw, Class. Quant. Grav. 31 (2014) 245007 [arXiv:1406.2574] [INSPIRE].
M. Hotta, R. Schützhold and W. Unruh, Partner particles for moving mirror radiation and black hole evaporation, Phys. Rev. D 91 (2015) 124060 [arXiv:1503.06109] [INSPIRE].
R. Wong, Asymptotic Approximations of Integrals, Society for Industrial and Applied Mathematics, Philadelphia U.S.A. (2001).
NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.9 of 2014-08-29.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1504.05269
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Brown, E.G., Louko, J. Smooth and sharp creation of a Dirichlet wall in 1+1 quantum field theory: how singular is the sharp creation limit?. J. High Energ. Phys. 2015, 61 (2015). https://doi.org/10.1007/JHEP08(2015)061
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2015)061