Skip to main content

Superalgebras, constraints and partition functions

A preprint version of the article is available at arXiv.

Abstract

We consider Borcherds superalgebras obtained from semisimple finite-dimensional Lie algebras by adding an odd null root to the simple roots. The additional Serre relations can be expressed in a covariant way. The spectrum of generators at positive levels are associated to partition functions for a certain set of constrained bosonic variables, the constraints on which are complementary to the Serre relations in the symmetric product. We give some examples, focusing on superalgebras related to pure spinors, exceptional geometry and tensor hierarchies, of how construction of the content of the algebra at arbitrary levels is simplified.

References

  1. E. Cremmer, B. Julia, H. Lü and C.N. Pope, Dualization of dualities. 2. Twisted self-duality of doubled fields and superdualities, Nucl. Phys. B 535 (1998) 242 [hep-th/9806106] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  2. P. Henry-Labordere, B. Julia and L. Paulot, Borcherds symmetries in M-theory, JHEP 04 (2002) 049 [hep-th/0203070] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. M. Henneaux, B.L. Julia and J. Levie, E_11, Borcherds algebras and maximal supergravity, JHEP 04 (2012) 078 [arXiv:1007.5241] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  4. E.A. Bergshoeff, M. de Roo, S.F. Kerstan and F. Riccioni, IIB supergravity revisited, JHEP 08 (2005) 098 [hep-th/0506013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ortín and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, JHEP 07 (2006) 018 [hep-th/0602280] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. E.A. Bergshoeff, J. Hartong, P.S. Howe, T. Ortín and F. Riccioni, IIA/IIB supergravity and ten-forms, JHEP 05 (2010) 061 [arXiv:1004.1348] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. J. Greitz and P.S. Howe, Maximal supergravity in three dimensions: supergeometry and differential forms, JHEP 07 (2011) 071 [arXiv:1103.2730] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. J. Greitz and P.S. Howe, Maximal supergravity in D = 10: forms, Borcherds algebras and superspace cohomology, JHEP 08 (2011) 146 [arXiv:1103.5053] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. J. Greitz and P.S. Howe, Half-maximal supergravity in three dimensions: supergeometry, differential forms and algebraic structure, JHEP 06 (2012) 177 [arXiv:1203.5585] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. P. Howe and J. Palmkvist, Forms and algebras in (half-)maximal supergravity theories, JHEP 05 (2015) 032 [arXiv:1503.00015] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. J. Palmkvist, Tensor hierarchies, Borcherds algebras and E11, JHEP 02 (2012) 066 [arXiv:1110.4892] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. J. Palmkvist, Borcherds and Kac-Moody extensions of simple finite-dimensional Lie algebras, JHEP 06 (2012) 003 [arXiv:1203.5107] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. F. Riccioni and P.C. West, The E 11 origin of all maximal supergravities, JHEP 07 (2007) 063 [arXiv:0705.0752] [INSPIRE].

    ADS  Article  Google Scholar 

  14. E.A. Bergshoeff, I. De Baetselier and T.A. Nutma, E 11 and the embedding tensor, JHEP 09 (2007) 047 [arXiv:0705.1304] [INSPIRE].

    ADS  Article  Google Scholar 

  15. E.A. Bergshoeff, J. Gomis, T.A. Nutma and D. Roest, Kac-Moody spectrum of (half-)maximal supergravities, JHEP 02 (2008) 069 [arXiv:0711.2035] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. B. de Wit, H. Samtleben and M. Trigiante, Gauging maximal supergravities, Fortsch. Phys. 52 (2004) 489 [hep-th/0311225] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of non-Abelian vector-tensor systems, Fortsch. Phys. 53 (2005) 442 [hep-th/0501243] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  18. B. de Wit, H. Nicolai and H. Samtleben, Gauged supergravities, tensor hierarchies and M-theory, JHEP 02 (2008) 044 [arXiv:0801.1294] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  19. B. de Wit and H. Samtleben, The end of the p-form hierarchy, JHEP 08 (2008) 015 [arXiv:0805.4767] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  20. J. Palmkvist, The tensor hierarchy algebra, J. Math. Phys. 55 (2014) 011701 [arXiv:1305.0018] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. J. Greitz, P. Howe and J. Palmkvist, The tensor hierarchy simplified, Class. Quant. Grav. 31 (2014) 087001 [arXiv:1308.4972] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

    ADS  Article  Google Scholar 

  23. N. Berkovits and N. Nekrasov, The character of pure spinors, Lett. Math. Phys. 74 (2005) 75 [hep-th/0503075] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. M. Cederwall, J. Edlund and A. Karlsson, Exceptional geometry and tensor fields, JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. O. Hohm and H. Samtleben, U-duality covariant gravity, JHEP 09 (2013) 080 [arXiv:1307.0509] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. O. Hohm and H. Samtleben, Exceptional field theory I: E 6(6) covariant form of M-theory and type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

    ADS  Google Scholar 

  27. O. Hohm and H. Samtleben, Exceptional field theory. II. E 7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  28. O. Hohm and H. Samtleben, Exceptional field theory. III. E 8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  29. V.G. Kac, Lie superalgebras, Adv. Math. 26 (1977) 8 [INSPIRE].

    Article  MATH  Google Scholar 

  30. V.G. Kac, Infinite dimensional Lie algebras, Cambridge University Press, Camrbidge U.K. (1990).

    Book  MATH  Google Scholar 

  31. M. Wakimoto, Infinite-dimensional Lie algebras, American Mathematical Society, U.S.A. (2001).

    MATH  Google Scholar 

  32. U. Ray, Automorphic forms and Lie superalgebras, Springer, Germany (2006).

    MATH  Google Scholar 

  33. U. Ray, A character formula for generalized Kac-Moody superalgebras, J. Algebra 177 (1995) 154.

    MathSciNet  Article  MATH  Google Scholar 

  34. M. Miyamoto, A generalization of Borcherds algebra and denominator formula, J. Algebra 180 (1996) 631.

    MathSciNet  Article  MATH  Google Scholar 

  35. M. Cederwall, B.E.W. Nilsson and D. Tsimpis, The structure of maximally supersymmetric Yang-Mills theory: constraining higher order corrections, JHEP 06 (2001) 034 [hep-th/0102009] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. M. Cederwall, Pure spinor superfieldsAn overview, Springer Proc. Phys. 153 (2014) 61 [arXiv:1307.1762] [INSPIRE].

    Article  Google Scholar 

  39. M. Cederwall, Jordan algebra dynamics, Phys. Lett. B 210 (1988) 169 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. M. Cederwall, Operators on pure spinor spaces, AIP Conf. Proc. 1243 (2010) 51 [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  41. P.A.M. Dirac, A remarkable representation of the 3 + 2 de Sitter group, J. Math. Phys. 4 (1963) 901 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  42. S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. A. Hanany and R. Kalveks, Highest weight generating functions for Hilbert series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Palmkvist.

Additional information

ArXiv ePrint: 1503.06215

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cederwall, M., Palmkvist, J. Superalgebras, constraints and partition functions. J. High Energ. Phys. 2015, 36 (2015). https://doi.org/10.1007/JHEP08(2015)036

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2015)036

Keywords

  • BRST Quantization
  • BRST Symmetry