Abstract
We determine the equation of state of 2+1-flavor QCD with physical quark masses, in the presence of a constant (electro)magnetic background field on the lattice. To determine the free energy at nonzero magnetic fields we develop a new method, which is based on an integral over the quark masses up to asymptotically large values where the effect of the magnetic field can be neglected. The method is compared to other approaches in the literature and found to be advantageous for the determination of the equation of state up to large magnetic fields. Thermodynamic observables including the longitudinal and transverse pressure, magnetization, energy density, entropy density and interaction measure are presented for a wide range of temperatures and magnetic fields, and provided in ancillary files. The behavior of these observables confirms our previous result that the transition temperature is reduced by the magnetic field. We calculate the magnetic susceptibility and permeability, verifying that the thermal QCD medium is paramagnetic around and above the transition temperature, while we also find evidence for weak diamagnetism at low temperatures.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Y. Aoki, G. Endrődi, Z. Fodor, S.D. Katz and K. Szabó, The order of the quantum chromodynamics transition predicted by the standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].
T. Bhattacharya et al., The QCD phase transition with physical-mass, chiral quarks, arXiv:1402.5175 [INSPIRE].
D. Teaney, J. Lauret and E.V. Shuryak, A hydrodynamic description of heavy ion collisions at the SPS and RHIC, nucl-th/0110037 [INSPIRE].
P.F. Kolb and U.W. Heinz, Hydrodynamic description of ultrarelativistic heavy ion collisions, nucl-th/0305084 [INSPIRE].
J.M. Lattimer and M. Prakash, Neutron star structure and the equation of state, Astrophys. J. 550 (2001) 426 [astro-ph/0002232] [INSPIRE].
M. Hindmarsh and O. Philipsen, WIMP dark matter and the QCD equation of state, Phys. Rev. D 71 (2005) 087302 [hep-ph/0501232] [INSPIRE].
D. Grasso and H.R. Rubinstein, Magnetic fields in the early universe, Phys. Rept. 348 (2001) 163 [astro-ph/0009061] [INSPIRE].
R.C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars — implications for gamma-ray bursts, Astrophys. J. 392 (1992) L9 [INSPIRE].
D. Kharzeev, K. Landsteiner, A. Schmitt and H.-U. Yee, Strongly interacting matter in magnetic fields, Lect. Notes Phys. 871 (2013) 1 [arXiv:1211.6245] [INSPIRE].
E.S. Fraga, Thermal chiral and deconfining transitions in the presence of a magnetic background, Lect. Notes Phys. 871 (2013) 121 [arXiv:1208.0917] [INSPIRE].
M. D’Elia, Lattice QCD simulations in external background fields, Lect. Notes Phys. 871 (2013) 181 [arXiv:1209.0374] [INSPIRE].
G.S. Bali et al., Thermodynamic properties of QCD in external magnetic fields, PoS(Confinement X)197 [arXiv:1301.5826] [INSPIRE].
K. Szabó, QCD at non-zero temperature and magnetic field, PoS(LATTICE 2013) 014 [arXiv:1401.4192] [INSPIRE].
J. Engels, J. Fingberg, F. Karsch, D. Miller and M. Weber, Nonperturbative thermodynamics of SU(N ) gauge theories, Phys. Lett. B 252 (1990) 625 [INSPIRE].
S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].
G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044 [arXiv:1111.4956] [INSPIRE].
F. Bruckmann, G. Endrődi and T.G. Kovács, Inverse magnetic catalysis and the Polyakov loop, JHEP 04 (2013) 112 [arXiv:1303.3972] [INSPIRE].
G.S. Bali, F. Bruckmann, G. Endrődi and A. Schäfer, Paramagnetic squeezing of QCD matter, Phys. Rev. Lett. 112 (2014) 042301 [arXiv:1311.2559] [INSPIRE].
L. Landau, E. Lifshitz and L. Pitaevskii, Electrodynamics of continuous media. Course of theoretical physics, Butterworth-Heinemann, Oxford U.K. (1995).
C. Kittel, Elementary statistical physics, Dover Books on Physics Series, Dover, New York U.S.A. (2004).
G.S. Bali, F. Bruckmann, G. Endrődi, F. Gruber and A. Schäfer, Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD, JHEP 04 (2013) 130 [arXiv:1303.1328] [INSPIRE].
E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo and P.L. Springsteen, Equation of state of a dense and magnetized fermion system, Phys. Rev. C 82 (2010) 065802 [arXiv:1009.3521] [INSPIRE].
Y. Aoki, Z. Fodor, S.D. Katz and K. Szabó, The equation of state in lattice QCD: with physical quark masses towards the continuum limit, JHEP 01 (2006) 089 [hep-lat/0510084] [INSPIRE].
L. Levkova and C. DeTar, Quark-gluon plasma in an external magnetic field, Phys. Rev. Lett. 112 (2014) 012002 [arXiv:1309.1142] [INSPIRE].
C. Bonati, M. D’Elia, M. Mariti, F. Negro and F. Sanfilippo, Magnetic susceptibility of strongly interacting matter across the deconfinement transition, Phys. Rev. Lett. 111 (2013) 182001 [arXiv:1307.8063] [INSPIRE].
C. Bonati, M. D’Elia, M. Mariti, F. Negro and F. Sanfilippo, Magnetic susceptibility and equation of state of N f = 2 + 1 QCD with physical quark masses, Phys. Rev. D 89 (2014) 054506 [arXiv:1310.8656] [INSPIRE].
G.S. Bali, F. Bruckmann, G. Endrődi and A. Schäfer, Magnetization and pressures at nonzero magnetic fields in QCD, arXiv:1310.8145 [INSPIRE].
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951) 664 [INSPIRE].
L.F. Abbott, Introduction to the background field method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE].
P. Elmfors, D. Persson and B.-S. Skagerstam, Real time thermal propagators and the QED effective action for an external magnetic field, Astropart. Phys. 2 (1994) 299 [hep-ph/9312226] [INSPIRE].
G.V. Dunne, Heisenberg-Euler effective Lagrangians: basics and extensions, hep-th/0406216 [INSPIRE].
G. Endrődi, QCD equation of state at nonzero magnetic fields in the hadron resonance gas model, JHEP 04 (2013) 023 [arXiv:1301.1307] [INSPIRE].
I.A. Shovkovy, Magnetic catalysis: a review, Lect. Notes Phys. 871 (2013) 13 [arXiv:1207.5081] [INSPIRE].
V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and catalysis of dynamical symmetry breaking by a magnetic field, Nucl. Phys. B 462 (1996) 249 [hep-ph/9509320] [INSPIRE].
S.L. Adler, J.C. Collins and A. Duncan, Energy-momentum-tensor trace anomaly in spin 1/2 quantum electrodynamics, Phys. Rev. D 15 (1977) 1712 [INSPIRE].
D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Perez Martinez and C. Providência, Quark matter under strong magnetic fields in the Nambu-Jona-Lasinio model, Phys. Rev. C 79 (2009) 035807 [arXiv:0811.3361] [INSPIRE].
E.S. Fraga and L.F. Palhares, Deconfinement in the presence of a strong magnetic background: an exercise within the MIT bag model, Phys. Rev. D 86 (2012) 016008 [arXiv:1201.5881] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin, J.H. Kuhn and J. Rittinger, Vector correlator in massless QCD at order \( \mathcal{O}\left({\alpha}_s^4\right) \) and the QED β-function at five loop, JHEP 07 (2012) 017 [arXiv:1206.1284] [INSPIRE].
G.S. Bali et al., QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE].
Wuppertal-Budapest collaboration, S. Borsányi et al., Is there still any T c mystery in lattice QCD? Results with physical masses in the continuum limit III, JHEP 09 (2010) 073 [arXiv:1005.3508] [INSPIRE].
A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].
G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B 469 (1996) 419 [hep-lat/9602007] [INSPIRE].
S. Borsányi et al., Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].
T. Steinert and W. Cassing, Electric and magnetic response of hot QCD matter, Phys. Rev. C 89 (2014) 035203 [arXiv:1312.3189] [INSPIRE].
V.D. Orlovsky and Y.A. Simonov, Magnetic susceptibility at zero and nonzero chemical potential in QCD and QED, arXiv:1406.1056 [INSPIRE].
P. Elmfors, D. Persson and B.-S. Skagerstam, QED effective action at finite temperature and density, Phys. Rev. Lett. 71 (1993) 480 [hep-th/9305004] [INSPIRE].
D. Cangemi and G.V. Dunne, Temperature expansions for magnetic systems, Annals Phys. 249 (1996) 582 [hep-th/9601048] [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
E. Braaten and A. Nieto, On the convergence of perturbative QCD at high temperature, Phys. Rev. Lett. 76 (1996) 1417 [hep-ph/9508406] [INSPIRE].
J.-P. Blaizot, E.S. Fraga and L.F. Palhares, Effect of quark masses on the QCD presssure in a strong magnetic background, Phys. Lett. B 722 (2013) 167 [arXiv:1211.6412] [INSPIRE].
P.A. Baikov, K.G. Chetyrkin and J.H. Kuhn, Adler function, Bjorken sum rule and the Crewther relation to order α 4 s in a general gauge theory, Phys. Rev. Lett. 104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].
V.G. Bornyakov, P.V. Buividovich, N. Cundy, O.A. Kochetkov and A. Schäfer, Deconfinement transition in two-flavour lattice QCD with dynamical overlap fermions in an external magnetic field, Phys. Rev. D 90 (2014) 034501 [arXiv:1312.5628] [INSPIRE].
E.M. Ilgenfritz, M. Muller-Preussker, B. Petersson and A. Schreiber, Magnetic catalysis (and inverse catalysis) at finite temperature in two-color lattice QCD, Phys. Rev. D 89 (2014) 054512 [arXiv:1310.7876] [INSPIRE].
E.S. Fraga, J. Noronha and L.F. Palhares, Large-N c deconfinement transition in the presence of a magnetic field, Phys. Rev. D 87 (2013) 114014 [arXiv:1207.7094] [INSPIRE].
S. Fayazbakhsh and N. Sadooghi, Phase diagram of hot magnetized two-flavor color superconducting quark matter, Phys. Rev. D 83 (2011) 025026 [arXiv:1009.6125] [INSPIRE].
E.S. Fraga, B.W. Mintz and J. Schaffner-Bielich, A search for inverse magnetic catalysis in thermal quark-meson models, Phys. Lett. B 731 (2014) 154 [arXiv:1311.3964] [INSPIRE].
J.O. Andersen, W.R. Naylor and A. Tranberg, Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop, JHEP 04 (2014) 187 [arXiv:1311.2093] [INSPIRE].
M. Ferreira, P. Costa, D.P. Menezes, C. Providência and N. Scoccola, Deconfinement and chiral restoration within the SU(3) Polyakov-Nambu-Jona-Lasinio and entangled Polyakov-Nambu-Jona-Lasinio models in an external magnetic field, Phys. Rev. D 89 (2014) 016002 [arXiv:1305.4751] [INSPIRE].
R.L.S. Farias, K.P. Gomes, G.I. Krein and M.B. Pinto, The importance of asymptotic freedom for the pseudocritical temperature in magnetized quark matter, arXiv:1404.3931 [INSPIRE].
M. Ferreira, P. Costa, O. Lourenço, T. Frederico and C. Providência, Inverse magnetic catalysis in the (2 + 1)-flavor Nambu-Jona-Lasinio and Polyakov-Nambu-Jona-Lasinio models, Phys. Rev. D 89 (2014) 116011 [arXiv:1404.5577] [INSPIRE].
A. Ayala, M. Loewe, A.J. Mizher and R. Zamora, Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant, Phys. Rev. D 90 (2014) 036001 [arXiv:1406.3885] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1406.0269
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bali, G.S., Bruckmann, F., Endrődi, G. et al. The QCD equation of state in background magnetic fields. J. High Energ. Phys. 2014, 177 (2014). https://doi.org/10.1007/JHEP08(2014)177
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2014)177