Abstract
We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. We determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.
Article PDF
Similar content being viewed by others
References
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. (2014) [arXiv:1303.5076] [INSPIRE].
B.W. Lee and S. Weinberg, Cosmological lower bound on heavy neutrino masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].
M.I. Vysotsky, A.D. Dolgov and Y. Zeldovich, Cosmological restriction on neutral lepton masses, JETP Lett. 26 (1977) 188 [Pisma Zh. Eksp. Teor. Fiz. 26 (1977) 200] [INSPIRE].
S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].
G.B. Gelmini, L.J. Hall and M.J. Lin, What is the cosmion?, Nucl. Phys. B 281 (1987) 726 [INSPIRE].
D.N. Spergel and W.H. Press, Effect of hypothetical, weakly interacting, massive particles on energy transport in the solar interior, Astrophys. J. 294 (1985) 663 [INSPIRE].
S.M. Barr, R.S. Chivukula and E. Farhi, Electroweak fermion number violation and the production of stable particles in the early universe, Phys. Lett. B 241 (1990) 387 [INSPIRE].
S.M. Barr, Baryogenesis, sphalerons and the cogeneration of dark matter, Phys. Rev. D 44 (1991) 3062 [INSPIRE].
D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].
S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [INSPIRE].
S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
R. Kitano and I. Low, Dark matter from baryon asymmetry, Phys. Rev. D 71 (2005) 023510 [hep-ph/0411133] [INSPIRE].
R. Kitano and I. Low, Grand unification, dark matter, baryon asymmetry and the small scale structure of the universe, hep-ph/0503112 [INSPIRE].
D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric dark matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].
K.M. Zurek, Asymmetric dark matter: theories, signatures and constraints, Phys. Rept. 537 (2014) 91 [arXiv:1308.0338] [INSPIRE].
L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
E.A. Baltz and L. Bergstrom, Detection of leptonic dark matter, Phys. Rev. D 67 (2003) 043516 [hep-ph/0211325] [INSPIRE].
T. Hambye, K. Kannike, E. Ma and M. Raidal, Emanations of dark matter: muon anomalous magnetic moment, radiative neutrino mass and novel leptogenesis at the TeV scale, Phys. Rev. D 75 (2007) 095003 [hep-ph/0609228] [INSPIRE].
C.-R. Chen and F. Takahashi, Cosmic rays from leptonic dark matter, JCAP 02 (2009) 004 [arXiv:0810.4110] [INSPIRE].
P.J. Fox and E. Poppitz, Leptophilic dark matter, Phys. Rev. D 79 (2009) 083528 [arXiv:0811.0399] [INSPIRE].
M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Model-independent implications of the e ± , anti-proton cosmic ray spectra on properties of dark matter, Nucl. Phys. B 813 (2009) 1 [Addendum ibid. B 873 (2013) 530] [arXiv:0809.2409] [INSPIRE].
A. Ibarra, A. Ringwald, D. Tran and C. Weniger, Cosmic rays from leptophilic dark matter decay via kinetic mixing, JCAP 08 (2009) 017 [arXiv:0903.3625] [INSPIRE].
H. Davoudiasl, Dark matter with time-varying leptophilic couplings, Phys. Rev. D 80 (2009) 043502 [arXiv:0904.3103] [INSPIRE].
J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting dark matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].
T. Cohen and K.M. Zurek, Leptophilic dark matter from the lepton asymmetry, Phys. Rev. Lett. 104 (2010) 101301 [arXiv:0909.2035] [INSPIRE].
D. Spolyar, M.R. Buckley, K. Freese, D. Hooper and H. Murayama, High energy neutrinos as a test of leptophilic dark matter, arXiv:0905.4764 [INSPIRE].
H.-S. Goh, L.J. Hall and P. Kumar, The leptonic Higgs as a messenger of dark matter, JHEP 05 (2009) 097 [arXiv:0902.0814] [INSPIRE].
Q.-H. Cao, E. Ma and G. Shaughnessy, Dark matter: the leptonic connection, Phys. Lett. B 673 (2009) 152 [arXiv:0901.1334] [INSPIRE].
P. Ko and Y. Omura, Supersymmetric U(1) B × U(1) L model with leptophilic and leptophobic cold dark matters, Phys. Lett. B 701 (2011) 363 [arXiv:1012.4679] [INSPIRE].
W. Chao, Pure leptonic gauge symmetry, neutrino masses and dark matter, Phys. Lett. B 695 (2011) 157 [arXiv:1005.1024] [INSPIRE].
W.-Z. Feng, P. Nath and G. Peim, Cosmic coincidence and asymmetric dark matter in a Stückelberg extension, Phys. Rev. D 85 (2012) 115016 [arXiv:1204.5752] [INSPIRE].
D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].
M. Das and S. Mohanty, Leptophilic dark matter in gauged L μ − L τ extension of MSSM, Phys. Rev. D 89 (2014) 025004 [arXiv:1306.4505] [INSPIRE].
P. Agrawal, S. Blanchet, Z. Chacko and C. Kilic, Flavored dark matter and its implications for direct detection and colliders, Phys. Rev. D 86 (2012) 055002 [arXiv:1109.3516] [INSPIRE].
A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].
M. Papucci and A. Strumia, Robust implications on dark matter from the first FERMI sky gamma map, JCAP 03 (2010) 014 [arXiv:0912.0742] [INSPIRE].
K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic, Conservative constraints on dark matter from the Fermi-LAT isotropic diffuse gamma-ray background spectrum, JCAP 11 (2010) 041 [arXiv:1002.3820] [INSPIRE].
G. Hutsi, A. Hektor and M. Raidal, Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying dark matter, JCAP 07 (2010) 008 [arXiv:1004.2036] [INSPIRE].
K.N. Abazajian, S. Blanchet and J.P. Harding, Current and future constraints on dark matter from prompt and inverse-Compton photon emission in the isotropic diffuse gamma-ray background, Phys. Rev. D 85 (2012) 043509 [arXiv:1011.5090] [INSPIRE].
D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].
S. Blanchet and J. Lavalle, Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos, JCAP 11 (2012) 021 [arXiv:1207.2476] [INSPIRE].
D. Hooper, C. Kelso and F.S. Queiroz, Stringent and robust constraints on the dark matter annihilation cross section from the region of the galactic center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].
M. Tavakoli, I. Cholis, C. Evoli and P. Ullio, Constraints on dark matter annihilations from diffuse gamma-ray emission in the galaxy, JCAP 01 (2014) 017 [arXiv:1308.4135] [INSPIRE].
I. Cholis, D. Hooper and S.D. McDermott, Dissecting the gamma-ray background in search of dark matter, JCAP 02 (2014) 014 [arXiv:1312.0608] [INSPIRE].
Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 milky way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].
J. Goodman et al., Gamma ray line constraints on effective theories of dark matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].
K.N. Abazajian, P. Agrawal, Z. Chacko and C. Kilic, Lower limits on the strengths of gamma ray lines from WIMP dark matter annihilation, Phys. Rev. D 85 (2012) 123543 [arXiv:1111.2835] [INSPIRE].
T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].
T. Bringmann and C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].
B. Shakya, A 130 GeV gamma ray signal from supersymmetry, Phys. Dark Univ. 2 (2013) 83 [arXiv:1209.2427] [INSPIRE].
L. Bergstrom, The 130 GeV fingerprint of right-handed neutrino dark matter, Phys. Rev. D 86 (2012) 103514 [arXiv:1208.6082] [INSPIRE].
M. Garny, A. Ibarra, M. Pato and S. Vogl, Internal bremsstrahlung signatures in light of direct dark matter searches, JCAP 12 (2013) 046 [arXiv:1306.6342] [INSPIRE].
T. Toma, Internal bremsstrahlung signature of real scalar dark matter and consistency with thermal relic density, Phys. Rev. Lett. 111 (2013) 091301 [arXiv:1307.6181] [INSPIRE].
F. Giacchino, L. Lopez-Honorez and M.H.G. Tytgat, Scalar dark matter models with significant internal bremsstrahlung, JCAP 10 (2013) 025 [arXiv:1307.6480] [INSPIRE].
J. Kopp, L. Michaels and J. Smirnov, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, JCAP 04 (2014) 022 [arXiv:1401.6457] [INSPIRE].
B. Kyae, PAMELA/ATIC anomaly from the meta-stable extra dark matter component and the leptophilic Yukawa interaction, JCAP 07 (2009) 028 [arXiv:0902.0071] [INSPIRE].
X.-J. Bi, X.-G. He and Q. Yuan, Parameters in a class of leptophilic models from PAMELA, ATIC and FERMI, Phys. Lett. B 678 (2009) 168 [arXiv:0903.0122] [INSPIRE].
N. Haba, Y. Kajiyama, S. Matsumoto, H. Okada and K. Yoshioka, Universally leptophilic dark matter from non-Abelian discrete symmetry, Phys. Lett. B 695 (2011) 476 [arXiv:1008.4777] [INSPIRE].
C.D. Carone and R. Primulando, A Froggatt-Nielsen model for leptophilic scalar dark matter decay, Phys. Rev. D 84 (2011) 035002 [arXiv:1105.4635] [INSPIRE].
L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].
A. Ibarra, A.S. Lamperstorfer and J. Silk, Dark matter annihilations and decays after the AMS-02 positron measurements, Phys. Rev. D 89 (2014) 063539 [arXiv:1309.2570] [INSPIRE].
K. Fukushima and J. Kumar, Dipole moment bounds on dark matter annihilation, Phys. Rev. D 88 (2013) 056017 [arXiv:1307.7120] [INSPIRE].
T. Kinoshita and M. Nio, The tenth-order QED contribution to the lepton g − 2: evaluation of dominant α 5 terms of muon g − 2, Phys. Rev. D 73 (2006) 053007 [hep-ph/0512330] [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. D 73 (2006) 119901] [hep-ph/0212229] [INSPIRE].
K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and α(M 2 Z ) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].
M. Davier and W.J. Marciano, The theoretical prediction for the muon anomalous magnetic moment, Ann. Rev. Nucl. Part. Sci. 54 (2004) 115 [INSPIRE].
M. Passera, The standard model prediction of the muon anomalous magnetic moment, J. Phys. G 31 (2005) R75 [hep-ph/0411168] [INSPIRE].
Muon G-2 collaboration, G.W. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].
M. Davier, S. Eidelman, A. Hocker and Z. Zhang, Updated estimate of the muon magnetic moment using revised results from e + e − annihilation, Eur. Phys. J. C 31 (2003) 503 [hep-ph/0308213] [INSPIRE].
I.R. Blokland, A. Czarnecki and K. Melnikov, Pion pole contribution to hadronic light by light scattering and muon anomalous magnetic moment, Phys. Rev. Lett. 88 (2002) 071803 [hep-ph/0112117] [INSPIRE].
K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226] [INSPIRE].
J.F. de Troconiz and F.J. Yndurain, The hadronic contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 71 (2005) 073008 [hep-ph/0402285] [INSPIRE].
J. Bijnens and J. Prades, The hadronic light-by-light contribution to the muon anomalous magnetic moment: where do we stand?, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170] [INSPIRE].
M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic contributions to the muon g − 2 and to α(M 2 Z ), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
J.P. Miller, E.d. Rafael, B.L. Roberts and D. Stöckinger, Muon (g − 2): experiment and theory, Ann. Rev. Nucl. Part. Sci. 62 (2012) 237 [INSPIRE].
F. Jegerlehner and A. Nyffeler, The muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].
D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
J.P. Leveille, The second order weak correction to (g − 2) of the muon in arbitrary gauge models, Nucl. Phys. B 137 (1978) 63 [INSPIRE].
S.R. Moore, K. Whisnant and B.-L. Young, Second order corrections to the muon anomalous magnetic moment in alternative electroweak models, Phys. Rev. D 31 (1985) 105 [INSPIRE].
J.A. Grifols and A. Méndez, Constraints on supersymmetric particle masses from (g − 2) μ , Phys. Rev. D 26 (1982) 1809 [INSPIRE].
LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
A. Kumar and S. Tulin, Top-flavored dark matter and the forward-backward asymmetry, Phys. Rev. D 87 (2013) 095006 [arXiv:1303.0332] [INSPIRE].
Y. Zeldovich, Electromagnetic interaction with parity violation, Sov. Phys. JETP 6 (1958) 1184 [Zh. Eksp. Teor. Fiz. 33 (1958) 1531].
J.F. Nieves, Electromagnetic properties of Majorana neutrinos, Phys. Rev. D 26 (1982) 3152 [INSPIRE].
B. Kayser, Majorana neutrinos and their electromagnetic properties, Phys. Rev. D 26 (1982) 1662 [INSPIRE].
E.E. Radescu, Comments on the electromagnetic properties of Majorana fermions, Phys. Rev. D 32 (1985) 1266 [INSPIRE].
F. Boudjema, C. Hamzaoui, V. Rahal and H.C. Ren, Electromagnetic properties of generalized Majorana particles, Phys. Rev. Lett. 62 (1989) 852 [INSPIRE].
F. Boudjema and C. Hamzaoui, Massive and massless Majorana particles of arbitrary spin: covariant gauge couplings and production properties, Phys. Rev. D 43 (1991) 3748 [INSPIRE].
V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [INSPIRE].
S. Chang, N. Weiner and I. Yavin, Magnetic inelastic dark matter, Phys. Rev. D 82 (2010) 125011 [arXiv:1007.4200] [INSPIRE].
P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].
E. Eichten, K.D. Lane and M.E. Peskin, New tests for quark and lepton substructure, Phys. Rev. Lett. 50 (1983) 811 [INSPIRE].
H. Kroha, Compositeness limits from e + e − annihilation revisited, Phys. Rev. D 46 (1992) 58 [INSPIRE].
ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, S. Schael et al., Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
D. Bourilkov, Hint for axial vector contact interactions in the data on e + e − → e + e −(γ) at center-of-mass energies 192-208 GeV, Phys. Rev. D 64 (2001) 071701 [hep-ph/0104165] [INSPIRE].
R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].
J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].
A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].
J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+e− colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].
P. Fayet, U -boson production in e + e − annihilations, ψ and Υ decays and light dark matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].
M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].
ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049, CERN, Geneva Switzerland (2013).
P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A classification of dark matter candidates with primarily spin-dependent interactions with matter, arXiv:1003.1912 [INSPIRE].
J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].
S. Chang, R. Edezhath, J. Hutchinson and M. Luty, Effective WIMPs, Phys. Rev. D 89 (2014) 015011 [arXiv:1307.8120] [INSPIRE].
Y. Bai and J. Berger, Fermion portal dark matter, JHEP 11 (2013) 171 [arXiv:1308.0612] [INSPIRE].
A. DiFranzo, K.I. Nagao, A. Rajaraman and T.M.P. Tait, Simplified models for dark matter interacting with quarks, JHEP 11 (2013) 014 [arXiv:1308.2679] [INSPIRE].
Y. Bai and J. Berger, Lepton portal dark matter, arXiv:1402.6696 [INSPIRE].
A. Freitas, J. Lykken, S. Kell and S. Westhoff, Testing the muon g − 2 anomaly at the LHC, JHEP 05 (2014) 145 [arXiv:1402.7065] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1402.7369
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Agrawal, P., Chacko, Z. & Verhaaren, C.B. Leptophilic dark matter and the anomalous magnetic moment of the muon. J. High Energ. Phys. 2014, 147 (2014). https://doi.org/10.1007/JHEP08(2014)147
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2014)147