Abstract
Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state projection model of black hole evaporation proposed by Horowitz and Maldacena, pointing out that this model admits cloning of quantum states and polygamous entanglement, allowing unitarity of the evaporation process to be reconciled with smoothness of the black hole event horizon. Though the model seems to require carefully tuned dynamics to ensure exact unitarity of the black hole S-matrix, for a generic final-state boundary condition the deviations from unitarity are exponentially small in the black hole entropy; furthermore observers inside black holes need not detect any deviations from standard quantum mechanics. Though measurements performed inside old black holes could potentially produce causality-violating phenomena, the computational complexity of decoding the Hawking radiation may render the causality violation unobservable. Final-state projection models illustrate how inviolable principles of standard quantum mechanics might be circumvented in a theory of quantum gravity.
References
S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].
S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].
L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].
L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].
G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].
B.M. Terhal, Is entanglement monogamous?, IBM J. Res. Dev. 48 (2004) 71 [quant-ph/0307120].
M. Koashi and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev. A 69 (2004) 022309 [quant-ph/0310037].
S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].
S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].
J. Preskill, private communication at the ITP, UC Santa Barbara Conference on Quantum Aspects of Black Holes, 21-26 Jun 1993.
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070] [INSPIRE].
K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].
E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].
W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299 (1982) 802 [INSPIRE].
D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982) 271 [INSPIRE].
J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].
D. Gottesman and J. Preskill, Comment on ‘The black hole final state’, JHEP 03 (2004) 026 [hep-th/0311269] [INSPIRE].
S. Lloyd, Almost certain escape from black holes, Phys. Rev. Lett. 96 (2006) 061302 [quant-ph/0406205] [INSPIRE].
Y. Aharonov, D.Z. Albert and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60 (1988) 1351 [INSPIRE].
S. Lloyd et al., Closed timelike curves via post-selection: theory and experimental demonstration, Phys. Rev. Lett. 106 (2011) 040403 [arXiv:1005.2219] [INSPIRE].
S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannetti and Y. Shikano, Quantum mechanics of time travel through post-selected telportation, Phys. Rev. D 84 (2011) 025007 [arXiv:1007.2615].
D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].
R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].
R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal, Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].
M. Rangamani and M. Rota, Quantum channels in quantum gravity, arXiv:1405.4710 [INSPIRE].
C.H. Bennett et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895 [INSPIRE].
E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].
Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].
M. Żukowski, A. Zeilinger, M.A. Horne and A.K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping, Phys. Rev. Lett. 71 (1993) 4287.
S. Bose, V. Vedral and P.L. Knight, A multiparticle generalization of entanglement swapping, Phys. Rev. A 57 (1998) 822 [quant-ph/9708004] [INSPIRE].
D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].
P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7 [quant-ph/0702005].
C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs: constructions and applications, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].
J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].
S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time, Proc. Roy. Soc. A 461 (2005) 3473 [quant-ph/0412187].
R. Bousso, Firewalls from double purity, Phys. Rev. D 88 (2013) 084035 [arXiv:1308.2665] [INSPIRE].
R. Bousso, Frozen vacuum, Phys. Rev. Lett. 112 (2014) 041102 [arXiv:1308.3697] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1308.4209
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Lloyd, S., Preskill, J. Unitarity of black hole evaporation in final-state projection models. J. High Energ. Phys. 2014, 126 (2014). https://doi.org/10.1007/JHEP08(2014)126
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP08(2014)126
Keywords
- Black Holes
- Spacetime Singularities