Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Unitarity of black hole evaporation in final-state projection models

  • Open Access
  • Published: 21 August 2014
  • volume 2014, Article number: 126 (2014)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Unitarity of black hole evaporation in final-state projection models
Download PDF
  • Seth Lloyd1 &
  • John Preskill2 
  • 748 Accesses

  • 68 Citations

  • 15 Altmetric

  • 2 Mentions

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Almheiri et al. have emphasized that otherwise reasonable beliefs about black hole evaporation are incompatible with the monogamy of quantum entanglement, a general property of quantum mechanics. We investigate the final-state projection model of black hole evaporation proposed by Horowitz and Maldacena, pointing out that this model admits cloning of quantum states and polygamous entanglement, allowing unitarity of the evaporation process to be reconciled with smoothness of the black hole event horizon. Though the model seems to require carefully tuned dynamics to ensure exact unitarity of the black hole S-matrix, for a generic final-state boundary condition the deviations from unitarity are exponentially small in the black hole entropy; furthermore observers inside black holes need not detect any deviations from standard quantum mechanics. Though measurements performed inside old black holes could potentially produce causality-violating phenomena, the computational complexity of decoding the Hawking radiation may render the causality violation unobservable. Final-state projection models illustrate how inviolable principles of standard quantum mechanics might be circumvented in a theory of quantum gravity.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. S.W. Hawking, Black hole explosions, Nature 248 (1974) 30 [INSPIRE].

    Article  ADS  Google Scholar 

  2. S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. L. Susskind, L. Thorlacius and J. Uglum, The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993) 3743 [hep-th/9306069] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. L. Susskind and L. Thorlacius, Gedanken experiments involving black holes, Phys. Rev. D 49 (1994) 966 [hep-th/9308100] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  5. G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].

  6. L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  8. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291 [gr-qc/9305007] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. D.N. Page, Black hole information, hep-th/9305040 [INSPIRE].

  11. B.M. Terhal, Is entanglement monogamous?, IBM J. Res. Dev. 48 (2004) 71 [quant-ph/0307120].

    Article  Google Scholar 

  12. M. Koashi and A. Winter, Monogamy of quantum entanglement and other correlations, Phys. Rev. A 69 (2004) 022309 [quant-ph/0310037].

    Article  ADS  MathSciNet  Google Scholar 

  13. S.D. Mathur, The information paradox: a pedagogical introduction, Class. Quant. Grav. 26 (2009) 224001 [arXiv:0909.1038] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Preskill, private communication at the ITP, UC Santa Barbara Conference on Quantum Aspects of Black Holes, 21-26 Jun 1993.

  16. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP 09 (2007) 120 [arXiv:0708.4025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88 (2013) 064023 [arXiv:1211.7070] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Verlinde and H. Verlinde, Black hole entanglement and quantum error correction, JHEP 10 (2013) 107 [arXiv:1211.6913] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortschr. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  22. G.T. Horowitz and J.M. Maldacena, The black hole final state, JHEP 02 (2004) 008 [hep-th/0310281] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. W.K. Wootters and W.H. Zurek, A single quantum cannot be cloned, Nature 299 (1982) 802 [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Dieks, Communication by EPR devices, Phys. Lett. A 92 (1982) 271 [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. D. Gottesman and J. Preskill, Comment on ‘The black hole final state’, JHEP 03 (2004) 026 [hep-th/0311269] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Lloyd, Almost certain escape from black holes, Phys. Rev. Lett. 96 (2006) 061302 [quant-ph/0406205] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Aharonov, D.Z. Albert and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60 (1988) 1351 [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Lloyd et al., Closed timelike curves via post-selection: theory and experimental demonstration, Phys. Rev. Lett. 106 (2011) 040403 [arXiv:1005.2219] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannetti and Y. Shikano, Quantum mechanics of time travel through post-selected telportation, Phys. Rev. D 84 (2011) 025007 [arXiv:1007.2615].

    ADS  Google Scholar 

  31. D. Harlow and P. Hayden, Quantum computation vs. firewalls, JHEP 06 (2013) 085 [arXiv:1301.4504] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. R. Bousso, Complementarity is not enough, Phys. Rev. D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].

    ADS  Google Scholar 

  33. R. Bousso and D. Stanford, Measurements without probabilities in the final state proposal, Phys. Rev. D 89 (2014) 044038 [arXiv:1310.7457] [INSPIRE].

    ADS  Google Scholar 

  34. M. Rangamani and M. Rota, Quantum channels in quantum gravity, arXiv:1405.4710 [INSPIRE].

  35. C.H. Bennett et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. E. Poisson and W. Israel, Internal structure of black holes, Phys. Rev. D 41 (1990) 1796 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. Y. Sekino and L. Susskind, Fast scramblers, JHEP 10 (2008) 065 [arXiv:0808.2096] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Żukowski, A. Zeilinger, M.A. Horne and A.K. Ekert, “Event-ready-detectors” Bell experiment via entanglement swapping, Phys. Rev. Lett. 71 (1993) 4287.

    Article  ADS  Google Scholar 

  39. S. Bose, V. Vedral and P.L. Knight, A multiparticle generalization of entanglement swapping, Phys. Rev. A 57 (1998) 822 [quant-ph/9708004] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett. 111 (2013) 171301 [arXiv:1307.4706] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Hayden, M. Horodecki, A. Winter and J. Yard, A decoupling approach to the quantum capacity, Open Syst. Inf. Dyn. 15 (2008) 7 [quant-ph/0702005].

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Dankert, R. Cleve, J. Emerson and E. Livine, Exact and approximate unitary 2-designs: constructions and applications, Phys. Rev. A 80 (2009) 012304 [quant-ph/0606161].

    Article  ADS  Google Scholar 

  43. J. Polchinski, L. Susskind and N. Toumbas, Negative energy, superluminosity and holography, Phys. Rev. D 60 (1999) 084006 [hep-th/9903228] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  44. S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time, Proc. Roy. Soc. A 461 (2005) 3473 [quant-ph/0412187].

    Article  ADS  MathSciNet  Google Scholar 

  45. R. Bousso, Firewalls from double purity, Phys. Rev. D 88 (2013) 084035 [arXiv:1308.2665] [INSPIRE].

    ADS  Google Scholar 

  46. R. Bousso, Frozen vacuum, Phys. Rev. Lett. 112 (2014) 041102 [arXiv:1308.3697] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Mechanical Engineering, MIT, Cambridge, MA, 02139, U.S.A.

    Seth Lloyd

  2. Institute for Quantum Information and Matter, Caltech, Pasadena, CA, 91125, U.S.A.

    John Preskill

Authors
  1. Seth Lloyd
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. John Preskill
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to John Preskill.

Additional information

ArXiv ePrint: 1308.4209

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lloyd, S., Preskill, J. Unitarity of black hole evaporation in final-state projection models. J. High Energ. Phys. 2014, 126 (2014). https://doi.org/10.1007/JHEP08(2014)126

Download citation

  • Received: 25 September 2013

  • Revised: 11 July 2014

  • Accepted: 24 July 2014

  • Published: 21 August 2014

  • DOI: https://doi.org/10.1007/JHEP08(2014)126

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Spacetime Singularities
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature