C.J. Isham, Canonical quantum gravity and the problem of time, gr-qc/9210011 [INSPIRE].
B.S. DeWitt, The quantization of geometry, Gravitation: An Introduction to Current Research, in L. Witten ed., Wiley, New York U.S.A. (1962).
B.S. DeWitt, Quantum theory of gravity. I. The canonical theory, Phys. Rev.
160 (1967) 1113 [INSPIRE].
ADS
Article
MATH
Google Scholar
A.A. Grib, S.G. Mamayev and V.M. Mostepanenko, Vacuum Quantum Effects in Strong Fields, Friedmann Lab. Publ., St. Petersburg Russia (1994).
Google Scholar
S.G. Mamaev, V.M. Mostepanenko and A.A. Starobinskii, Particle creation from the vacuum near a homogeneous isotropic singularity, Zh. Eksp. Teor. Fiz.
70 (1976) 1577 [Sov. Phys. JETP
43 (1976) 823].
C.J. Isham and K.V. Kuchar, Representations of Space-time Diffeomorphisms. 1. Canonical Parametrized Field Theories, Annals Phys.
164 (1985) 288 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
C.J. Isham and K.V. Kuchar, Representations of Space-time Diffeomorphisms. 2. Canonical Geometrodynamics, Annals Phys.
164 (1985) 316 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
K.V. Kuchar and C.G. Torre, Gaussian reference fluid and interpretation of quantum geometrodynamics, Phys. Rev.
D 43 (1991) 419 [INSPIRE].
ADS
MathSciNet
Google Scholar
J.D. Brown and K.V. Kuchar, Dust as a standard of space and time in canonical quantum gravity, Phys. Rev.
D 51 (1995) 5600 [gr-qc/9409001] [INSPIRE].
ADS
MathSciNet
Google Scholar
B.S. DeWitt, The Global Approach to Quantum Field Theory, Volumes I and II, Clarendon Press, Oxford U.K. (2003).
I.L. Buchbinder, S.D. Odintsov and I.L. Shapiro, Effective action in quantum gravity, IOP, Bristol U.K. (1992).
Google Scholar
E. Elizalde and S.D. Odintsov, Renormalization group improved effective potential for gauge theories in curved space-time, Phys. Lett.
B 303 (1993) 240 [hep-th/9302074] [INSPIRE].
ADS
Article
Google Scholar
E. Elizalde and S.D. Odintsov, Renormalization group improved effective Lagrangian for interacting theories in curved space-time, Phys. Lett.
B 321 (1994) 199 [hep-th/9311087] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
A.I. Zel’nikov, The vacuum polarization of massive fields in algebraically special spaces (in Russian), Abstracts of VI-th Soviet Gravitational Conference, Moscow Russia, 1984, V.N. Ponomareva ed., Moscow State Pedagogical Insitute, Moscow Russia (1984), pg. 197.
S.P. Gavrilov and D.M. Gitman, Vacuum instability in external fields, Phys. Rev.
D 53 (1996) 7162 [hep-th/9603152] [INSPIRE].
ADS
Google Scholar
D.N. Page, Thermal stress tensors in static Einstein spaces, Phys. Rev.
D 25 (1982) 1499 [INSPIRE].
ADS
MathSciNet
Google Scholar
M.R. Brown, A.C. Ottewill and D.N. Page, Conformally invariant quantum field theory in static Einstein space-times, Phys. Rev.
D 33 (1986) 2840 [INSPIRE].
ADS
MathSciNet
Google Scholar
V.P. Frolov and A.I. Zelnikov, Killing approximation for vacuum and thermal stress-energy tensor in static space-times, Phys. Rev.
D 35 (1987) 3031 [INSPIRE].
ADS
MathSciNet
Google Scholar
V.P. Frolov and I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments, Springer-Verlag, New York U.S.A. (1998).
Book
MATH
Google Scholar
P.R. Anderson, W.A. Hiscock and D.A. Samuel, Stress - energy tensor of quantized scalar fields in static spherically symmetric space-times, Phys. Rev.
D 51 (1995) 4337 [INSPIRE].
ADS
MathSciNet
Google Scholar
P.O. Kazinski, One-loop effective potential of the Higgs field on the Schwarzschild background, Phys. Rev.
D 80 (2009) 124020 [arXiv:0909.3048] [INSPIRE].
ADS
MathSciNet
Google Scholar
P.O. Kazinski, Gravitational mass-shift effect in the standard model, Phys. Rev.
D 85 (2012) 044008 [arXiv:1107.4714] [INSPIRE].
ADS
Google Scholar
I.S. Kalinichenko and P.O. Kazinski, High-temperature expansion of the one-loop free energy of a scalar field on a curved background, Phys. Rev.
D 87 (2013) 084036 [arXiv:1301.5103] [INSPIRE].
ADS
Google Scholar
G.G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field Theory, Wiley-Interscience, New York U.S.A. (1972).
MATH
Google Scholar
B.S. DeWitt, Quantum field theory in curved spacetime, Phys. Rept.
19 (1975) 295 [INSPIRE].
ADS
Article
Google Scholar
P.O. Kazinski and M.A. Shipulya, One-loop omega-potential of quantum fields with ellipsoid constant-energy surface dispersion law, Annals Phys.
326 (2011) 2658 [arXiv:1103.5146] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
D.V. Fursaev, Kaluza-Klein method in theory of rotating quantum fields, Nucl. Phys.
B 596 (2001) 365 [Erratum ibid.
B 664 (2003) 403] [hep-th/0006217] [INSPIRE].
D.V. Fursaev, Statistical mechanics, gravity and Euclidean theory, Nucl. Phys. Proc. Suppl.
104 (2002) 33 [hep-th/0107089] [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
D.V. Vassilevich, Heat kernel expansion: user’s manual, Phys. Rept.
388 (2003) 279 [hep-th/0306138] [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
N.D. Birrel and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge U.K. (1982).
Book
Google Scholar
J.S. Dowker and G. Kennedy, Finite temperature and boundary effects in static space-times, J. Phys.
A 11 (1978) 895 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
N. Nakazawa and T. Fukuyama, On the energy-momentum tensor at finite temperature in curved space-time, Nucl. Phys.
B 252 (1985) 621 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
J.S. Dowker and J.P. Schofield, High temperature expansion of the free energy of a massive scalar field in a curved space, Phys. Rev.
D 38 (1988) 3327 [INSPIRE].
ADS
Google Scholar
J.S. Dowker and J.P. Schofield, Chemical potentials in curved space, Nucl. Phys.
B 327 (1989) 267 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
P.O. Kazinski, Propagator of a scalar field on a stationary slowly varying gravitational background, arXiv:1211.3448 [INSPIRE].
B.L. Hu and D.J. O’Connor, Effective Lagrangian for λϕ
4
theory in curved space-time with varying background fields: quasilocal approximation, Phys. Rev.
D 30 (1984) 743 [INSPIRE].
ADS
MathSciNet
Google Scholar
I.G. Avramidi, Non-perturbative effective action in gauge theories and quantum gravity, Adv. Theor. Math. Phys.
14 (2010) 309 [arXiv:0903.1295] [INSPIRE].
Article
MATH
MathSciNet
Google Scholar
I.M. Gel’fand and G.E. Shilov, Generalized Functions, Vol. I: Properties and Operations, Academic Press, New York U.S.A., London U.K., (1964).
R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. I. Three-dimensional problem with smooth boundary surface, Annals Phys.
60 (1970) 401 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain. II. Electromagnetic field. Riemannian spaces, Annals Phys.
64 (1971) 271.
ADS
Article
MATH
MathSciNet
Google Scholar
R. Balian and C. Bloch, Distribution of eigenfrequencies for the wave equation in a finite domain: III. Eigenfrequency density oscillations, Annals Phys.
69 (1972) 76 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
R. Balian and C. Bloch, Solution of the Schrödinger Equation in Terms of Classical Paths, Annals Phys.
85 (1974) 514 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Butterworth-Heinemann, San Francisco U.S.A. (1994).
Google Scholar
A.L. Zelmanov, Chronometric invariants and comoving coordinates in General Relativity, Dokl. Akad. Nauk SSSR
107 (1956) 815.
MathSciNet
Google Scholar
Yu.S. Vladimirov, Reference Frames in Theory of Gravity (in Russian), Energoizdat, Moscow Russia (1982).
Google Scholar
N.V. Mitskevich, A.P. Efremov and A.I. Nesterov, Dynamics of Fields in General Relativity (in Russian), Energoatomizdat, Moscow Russia (1985).
Google Scholar
R.M. Wald, General Relativity, University of Chicago Press, Chicago U.S.A. (1984).
Book
MATH
Google Scholar
P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or. Perish, Wilmington, Delaware U.S.A. (1984).
B.S. DeWitt, Transition from discrete to continuous spectra, Phys. Rev.
103 (1956) 1565 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
A.B. Migdal, Vacuum polarization in strong fields and pion condensation, Sov. Phys. Usp.
20 (1977) 879.
ADS
Article
Google Scholar
L.D. Landau and E.M. Lifshitz, Statistical Physics. Part I, Pergamon, Oxford U.K. (1978).
Google Scholar
E.M. Lifshits and L.P. Pitaevskii, Statistical Physics. Part II, Pergamon, New York U.S.A. (1980).
Google Scholar
I.M. Lifshits, M.Ya. Azbel and M.I. Kaganov, Electron theory of metals, Consultants Bureau, New York U.S.A. (1973).
Google Scholar
D. Shoenberg, Magnetic Oscillations in Metals, (Cambridge University Press, Cambridge U.S.A. (1984).
Book
Google Scholar
Y. Gusev and A. Zelnikov, Finite temperature nonlocal effective action for quantum fields in curved space, Phys. Rev.
D 59 (1999) 024002 [hep-th/9807038] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 2, Wiley, New York U.S.A. (1962).
MATH
Google Scholar
P.B. Gilkey, Asymptotic Formulae in Spectral Geometry, CRC Press LLC, Boca Raton U.S.A. (2004).
MATH
Google Scholar
A.Z. Petrov, Einstein Spaces, Pergamon, Oxford U.K. (1969).
MATH
Google Scholar
J.D. Bekenstein and L. Parker, Path Integral Evaluation of Feynman Propagator in Curved Space-time, Phys. Rev.
D 23 (1981) 2850 [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Weinberg, Phenomenological Lagrangians, Physica
A 96 (1979) 327 [INSPIRE].
ADS
Google Scholar
J.F. Donoghue, E. Golowich and B.R. Holstein, Dynamics of the Standard Model, Cambridge University Press, Cambridge U.K. (1994).
Google Scholar
P.O. Kazinski, Comment on “Quantum versus classical instability of scalar fields in curved backgrounds”, arXiv:1310.6252 [INSPIRE].
G.E.A. Matsas, R.F.P. Mendes and D.A.T. Vanzella, Reply to “Comment on ‘Quantum versus classical instability of scalar fields in curved backgrounds”, arXiv:1310.7849 [INSPIRE].
L.V. Prokhorov, Hamiltonian path integrals (in Russian), Fizika Elementarnykh Chastits i Atomnogo Yadra
13 (1982) 1094.
MathSciNet
Google Scholar
L. Parker and D.J. Toms, New Form for the Coincidence Limit of the Feynman Propagator, or Heat Kernel, in Curved Space-time, Phys. Rev.
D 31 (1985) 953 [INSPIRE].
ADS
MathSciNet
Google Scholar
I. Jack and L. Parker, Proof of Summed Form of Proper Time Expansion for Propagator in Curved Space-time, Phys. Rev.
D 31 (1985) 2439 [INSPIRE].
ADS
MathSciNet
Google Scholar
L. Parker and D.J. Toms, Quantum Field Theory in Curved Spacetime, Cambridge University Press, Cambridge U.K. (2009).
Book
MATH
Google Scholar
K.W. Howard, Vacuum
\( \left\langle {T}_{\mu}^{\nu}\right\rangle \)
in Schwarzschild spacetime, Phys. Rev.
D 30 (1984) 2532 [INSPIRE].
ADS
Google Scholar
L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Pergamon, Oxford U.K. (1965).
MATH
Google Scholar
D.R. Brill and J.A. Wheeler, Interaction of neutrinos and gravitational fields, Rev. Mod. Phys.
29 (1957) 465 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys.
43 (1975) 199 [Erratum ibid.
46 (1976) 206] [INSPIRE].
V.S. Buldyrev and V.E. Nomofilov, Asymptotic solutions of an elliptic equation system on a Riemannian manifold concentrated in the vicinity of a phase trajectory, J. Phys.
A 14 (1981) 1577 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
V.G. Bagrov, V.V. Belov, A.Y. Trifonov and A.A. Evseevich, Quasiclassical trajectory coherent approximation in quantum mechanics of charged particle in curved space-time, Class. Quant. Grav.
8 (1991) 515 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Acad. Press, Boston U.S.A. (1994).
MATH
Google Scholar
L. Landau, Diamagnetismus der Metalle, Z. Phys.
64 (1930) 629.
ADS
Article
MATH
Google Scholar
A.S. Vshivtsev, K.G. Klimenko and B.V. Magnitsky, Landau oscillations in (2+1)-dimensional quantum electrodynamics, J. Exp. Theor. Phys.
80 (1995) 162 [INSPIRE].
ADS
Google Scholar
A.S. Vshivtsev and K.G. Klimenko, An exact expression for magnetic oscillations in quantum electrodynamics, Zh. Eksp. Theor. Fiz.
109 (1996) 954 [J. Exp. Theor. Phys.
154 (1996) 82].
W. Heisenberg and H. Euler, Consequences of Dirac’s theory of positrons, Z. Phys.
98 (1936) 714 [physics/0605038] [INSPIRE].
ADS
Article
Google Scholar
J.S. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev.
82 (1951) 664 [INSPIRE].
ADS
Article
MATH
MathSciNet
Google Scholar
N.N. Bogolyubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, Wiley, New York U.S.A. (1980).
Google Scholar
J.C. Collins, Renormalization, Cambridge University Press, Cambridge U.K. (1984).
Book
MATH
Google Scholar
V.A. Fock, The Theory of Space, Time and Gravitation, Pergamon Press, London U.K. (1959).
MATH
Google Scholar
A.H. Taub, General Relativistic Variational Principle for Perfect Fluids, Phys. Rev.
94 (1954) 1468 [INSPIRE].
ADS
Article
MathSciNet
Google Scholar
B.F. Schutz, Perfect Fluids in General Relativity: Velocity Potentials and a Variational Principle, Phys. Rev.
D 2 (1970) 2762 [INSPIRE].
ADS
MathSciNet
Google Scholar
J.D. Brown, Action functionals for relativistic perfect fluids, Class. Quant. Grav.
10 (1993) 1579 [gr-qc/9304026] [INSPIRE].
ADS
Article
MATH
Google Scholar
P. Hajicek and J. Kijowski, Lagrangian and Hamiltonian formalism for discontinuous fluid and gravitational field, Phys. Rev.
D 57 (1998) 914 [Erratum ibid.
D 61 (2000) 129901] [gr-qc/9707020] [INSPIRE].
R. Jackiw, V.P. Nair, S.Y. Pi and A.P. Polychronakos, Perfect fluid theory and its extensions, J. Phys.
A 37 (2004) R327 [hep-ph/0407101] [INSPIRE].
ADS
Article
Google Scholar
P.O. Kazinski, Radiation reaction for multipole moments, J. Exp. Theor. Phys.
105 (2007) 327 [hep-th/0604168] [INSPIRE].
ADS
Article
Google Scholar
R.G. Newton, Scattering Theory of Waves and Particles, Springer-Verlag, New York U.S.A. (1982)
Book
MATH
Google Scholar
A.N. Vasil’ev, The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics, Chapman & Hall/CRC, Boca Raton U.S.A. (2004).
Book
MATH
Google Scholar