F. Donato, N. Fornengo and P. Salati, Anti-deuterons as a signature of supersymmetric dark matter, Phys. Rev.
D 62 (2000) 043003 [hep-ph/9904481] [INSPIRE].
ADS
Google Scholar
H. Baer and S. Profumo, Low energy antideuterons: shedding light on dark matter, JCAP
12 (2005) 008 [astro-ph/0510722] [INSPIRE].
Article
ADS
Google Scholar
F. Donato, N. Fornengo and D. Maurin, Antideuteron fluxes from dark matter annihilation in diffusion models, Phys. Rev.
D 78 (2008) 043506 [arXiv:0803.2640] [INSPIRE].
ADS
Google Scholar
C.B. Brauninger and M. Cirelli, Anti-deuterons from heavy Dark Matter, Phys. Lett.
B 678 (2009) 20 [arXiv:0904.1165] [INSPIRE].
Article
ADS
Google Scholar
A. Ibarra and D. Tran, Antideuterons from Dark Matter Decay, JCAP
06 (2009) 004 [arXiv:0904.1410] [INSPIRE].
Article
ADS
Google Scholar
Y. Cui, J.D. Mason and L. Randall, General Analysis of Antideuteron Searches for Dark Matter, JHEP
11 (2010) 017 [arXiv:1006.0983] [INSPIRE].
Article
ADS
Google Scholar
L.A. Dal and M. Kachelriess, Antideuterons from dark matter annihilations and hadronization model dependence, Phys. Rev.
D 86 (2012) 103536 [arXiv:1207.4560] [INSPIRE].
ADS
Google Scholar
A. Ibarra and S. Wild, Prospects of antideuteron detection from dark matter annihilations or decays at AMS-02 and GAPS, JCAP
02 (2013) 021 [arXiv:1209.5539] [INSPIRE].
Article
ADS
Google Scholar
M. Kadastik, M. Raidal and A. Strumia, Enhanced anti-deuteron Dark Matter signal and the implications of PAMELA, Phys. Lett.
B 683 (2010) 248 [arXiv:0908.1578] [INSPIRE].
Article
ADS
Google Scholar
N. Fornengo, L. Maccione and A. Vittino, Dark matter searches with cosmic antideuterons: status and perspectives, JCAP
09 (2013) 031 [arXiv:1306.4171] [INSPIRE].
Article
ADS
Google Scholar
A. Kounine, Status of the AMS Experiment, arXiv:1009.5349 [INSPIRE].
F.R. Spada, Antimatter and DM Search in Space With AMS-02, in Proceedings of the 28th International Conference on Physics in Collision, Perugia, 2008, eConf
C 080625 (2008) 0023.
AMS-02 collaboration, F.R. Spada, Antimatter and Dark Matter search in space with AMS-02, arXiv:0810.3831 [INSPIRE].
J.I. Kapusta, Mechanisms for deuteron production in relativistic nuclear collisions, Phys. Rev.
C 21 (1980) 1301 [INSPIRE].
ADS
Google Scholar
L.P. Csernai and J.I. Kapusta, Entropy and Cluster Production in Nuclear Collisions, Phys. Rept.
131 (1986) 223 [INSPIRE].
Article
ADS
Google Scholar
A. Schwarzschild and C. Zupancic, Production of Tritons, Deuterons, Nucleons and Mesons by 30-GeV Protons on A-1, Be and Fe Targets, Phys. Rev.
129 (1963) 854 [INSPIRE].
Article
ADS
Google Scholar
R. Duperray, B. Baret, D. Maurin, G. Boudoul, A. Barrau et al., Flux of light antimatter nuclei near Earth, induced by cosmic rays in the Galaxy and in the atmosphere, Phys. Rev.
D 71 (2005) 083013 [astro-ph/0503544] [INSPIRE].
ADS
Google Scholar
P. Chardonnet, J. Orloff and P. Salati, The Production of antimatter in our galaxy, Phys. Lett.
B 409 (1997) 313 [astro-ph/9705110] [INSPIRE].
Article
ADS
Google Scholar
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP
05 (2006) 026 [hep-ph/0603175] [INSPIRE].
Article
ADS
Google Scholar
Y. Antipov, S.P. Denisov, S.V. Donskov, Y. Gorin, V.A. Kachanov et al., Observation of antihelium-3, Nucl. Phys.
B 31 (1971) 235 [INSPIRE].
Article
ADS
Google Scholar
N.K. Vishnevsky, M.I. Grachev, V.I. Rykalin, V.G. Lapshin, V.I. Solyanik et al., Observation of antitritium, Yad. Fiz.
20 (1974) 694 [INSPIRE].
Google Scholar
W. Bozzoli, A. Bussiere, G. Giacomelli, E. Lesquoy, R. Meunier et al., Production of d, T,
3
He,
\( \overline{d} \)
, Anti-t and Anti-
3
He by 200-GeV Protons, Nucl. Phys.
B 144 (1978) 317 [INSPIRE].
Article
ADS
Google Scholar
A. Bussiere, G. Giacomelli, E. Lesquoy, R. Meunier, L. Moscoso et al., Particle Production and Search for Longlived Particles in 200-GeV/c to 240-GeV/c Proton — Nucleon Collisions, Nucl. Phys.
B 174 (1980) 1 [INSPIRE].
Article
ADS
Google Scholar
M.C. Lemaire, S. Nagamiya, S. Schnetzer, H. Steiner and I. Tanihata, Composite particle emission in relativistic heavy ion collisions, Phys. Lett. B
85 (1979) 38.
Article
ADS
Google Scholar
ALEPH collaboration, S. Schael et al., Deuteron and anti-deuteron production in e
+
e
−
collisions at the Z resonance, Phys. Lett.
B 639 (2006) 192 [hep-ex/0604023] [INSPIRE].
Article
ADS
Google Scholar
M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP
03 (2011) 051 [Erratum ibid.
1210 (2012) E01] [arXiv:1012.4515] [INSPIRE].
R. Duperray, Production and propagation de noyaux légers d’antimatière dans la Galaxie, PhD thesis, University of Grenoble, 2004.
F. Donato, N. Fornengo, D. Maurin and P. Salati, Antiprotons in cosmic rays from neutralino annihilation, Phys. Rev.
D 69 (2004) 063501 [astro-ph/0306207] [INSPIRE].
ADS
Google Scholar
M. Cirelli and G. Giesen, Antiprotons from Dark Matter: Current constraints and future sensitivities, JCAP
04 (2013) 015 [arXiv:1301.7079] [INSPIRE].
Article
ADS
Google Scholar
N. Fornengo, L. Maccione and A. Vittino, Constraints on particle dark matter from cosmic-ray antiprotons, JCAP
04 (2014) 003 [arXiv:1312.3579] [INSPIRE].
Article
ADS
Google Scholar
PAMELA collaboration, O. Adriani et al., PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy, Phys. Rev. Lett.
105 (2010) 121101 [arXiv:1007.0821] [INSPIRE].
Article
ADS
Google Scholar
T.K. Gaisser and E.H. Levy, Astrophysical Implications of Cosmic Ray anti-Protons, Phys. Rev.
D 10 (1974) 1731 [INSPIRE].
ADS
Google Scholar
AMS collaboration, J. Alcaraz et al., Search for anti-helium in cosmic rays, Phys. Lett.
B 461 (1999) 387 [hep-ex/0002048] [INSPIRE].
Article
ADS
Google Scholar
K. Abe, H. Fuke, S. Haino, T. Hams, M. Hasegawa et al., Search for Antihelium with the BESS-Polar Spectrometer, Phys. Rev. Lett.
108 (2012) 131301 [arXiv:1201.2967] [INSPIRE].
Article
ADS
Google Scholar
A.G. Mayorov, A.M. Galper, O. Adriani, G.A. Bazilevskaya, G. Barbarino et al., Upper limit on the antihelium flux in primary cosmic rays, JETP Lett.
93 (2011) 628 [INSPIRE].
Article
ADS
Google Scholar
PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science
332 (2011) 69 [arXiv:1103.4055] [INSPIRE].
Article
ADS
Google Scholar
AMS collaboration, V. Choutko, Precision Measurement of the Cosmic Ray Helium Flux with AMS Experiment, 143.107.180.38/indico/contributionDisplay.py?contribId=1262&sessionId=3&confId=0, in Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, 2013.
K. Mori, C.J. Hailey, E.A. Baltz, W.W. Craig, M. Kamionkowski et al., A Novel antimatter detector based on x-ray deexcitation of exotic atoms, Astrophys. J.
566 (2002) 604 [astro-ph/0109463] [INSPIRE].
Article
ADS
Google Scholar
C.J. Hailey, W.W. Craig, F.A. Harrison, J. Hong, K. Mori et al., Development of the gaseous antiparticle spectrometer for space - based antimatter detection, Nucl. Instrum. Meth.
B 214 (2004) 122 [astro-ph/0306589] [INSPIRE].
Article
ADS
Google Scholar
C.J. Hailey, T. Aramaki, W.W. Craig, L. Fabris, F. Gahbauer et al., Accelerator testing of the general antiparticle spectrometer, a novel approach to indirect dark matter detection, JCAP
01 (2006) 007 [astro-ph/0509587] [INSPIRE].
Article
ADS
Google Scholar
J.E. Koglin, T. Aramaki, S.E. Boggs, W.W. Craig, H. Fuke et al., Antideuterons as an indirect dark matter signature: Design and preparation for a balloon-born GAPS experiment, J. Phys. Conf. Ser.
120 (2008) 042011 [INSPIRE].
Article
ADS
Google Scholar
A. Ibarra and S. Wild, Determination of the Cosmic Antideuteron Flux in a Monte Carlo approach, Phys. Rev.
D 88 (2013) 023014 [arXiv:1301.3820] [INSPIRE].
ADS
Google Scholar
B. Alper, H. Boeggild, P.S.L. Booth, F. Bulos, L.J. Carroll et al., Large angle production of stable particles heavier than the proton and a search for quarks at the CERN intersecting storage rings, Phys. Lett.
B 46 (1973) 265 [INSPIRE].
Article
ADS
Google Scholar
British-Scandinavian-MIT collaboration, S. Henning et al., Production of Deuterons and anti-Deuterons in Proton Proton Collisions at the CERN ISR, Lett. Nuovo Cim.
21 (1978) 189 [INSPIRE].
Article
Google Scholar
L.A. Dal and A.R. Raklev, Antideuteron Limits on Decaying Dark Matter with a Tuned Formation Model, Phys. Rev.
D 89 (2014) 103504 [arXiv:1402.6259] [INSPIRE].
ADS
Google Scholar
M.J. Christ, S. Dake, J.H. Derrickson, W.F. Fountain, M. Fuki et al., Cosmic-ray proton and helium spectra: Results from the JACEE Experiment, Astrophys. J.
502 (1998) 278 [INSPIRE].
Article
ADS
Google Scholar
RUNJOB collaboration, V.A. Derbina et al., Cosmic-ray spectra and composition in the energy range of 10-TeV - 1000-TeV per particle obtained by the RUNJOB experiment, Astrophys. J.
628 (2005) L41 [INSPIRE].
Article
ADS
Google Scholar
A.D. Panov A.D. et al, Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci. Phys.
73 (2009) 564.
Y.S. Yoon, H.S. Ahn, P.S. Allison, M.G. Bagliesi, J.J. Beatty et al., Cosmic-Ray Proton and Helium Spectra from the First CREAM Flight, Astrophys. J.
728 (2011) 122 [arXiv:1102.2575] [INSPIRE].
Article
ADS
Google Scholar
PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science
332 (2011) 69 [arXiv:1103.4055] [INSPIRE].
Article
ADS
Google Scholar
on Behalf of the AMS-02 collaboration, C. Consolandi, Primary Cosmic Ray Proton Flux Measured by AMS-02, arXiv:1402.0467 [INSPIRE].
E. Carlson, A. Coogan, T. Linden, S. Profumo, A. Ibarra et al., Antihelium from Dark Matter, arXiv:1401.2461 [INSPIRE].