Superstring amplitudes and the associator

Open Access
Article

Abstract

We investigate a pattern in the α′ expansion of tree-level open superstring amplitudes which correlates the appearance of higher depth multiple zeta values with that of simple zeta values in a particular way. We rephrase this relationship in terms of the coaction on motivic multiple zeta values and show that the pattern takes a very simple form, which can be simply explained by relating the amplitudes to the Drinfel’d associator derived from the Knizhnik-Zamolodchikov equation. Given this correspondence we show that, at least in the simplest case of the four-point amplitude, the associator can be used to extract the form of the amplitude.

Keywords

Scattering Amplitudes Brane Dynamics in Gauge Theories 

References

  1. [1]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP 12 (2011) 011 [arXiv:1102.0062] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  3. [3]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11 (2011) 023 [arXiv:1108.4461] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    P. Heslop and V.V. Khoze, Wilson loops @ 3-loops in special kinematics, JHEP 11 (2011) 152 [arXiv:1109.0058] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F.C. Brown, Multiple zeta values and periods of moduli spaces M 0,n, Annales Sci. Ecole Norm. Sup. 42 (2009) 371 [math/0606419] [INSPIRE].MATHGoogle Scholar
  9. [9]
    A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE].
  10. [10]
    A. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J. 128 (2005) 209 [math/0208144] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    F. Brown, On the decomposition of motivic multiple zeta values, arXiv:1102.1310 [INSPIRE].
  12. [12]
    F. Brown, Mixed Tate motives over \( \mathbb{Z} \), arXiv:1102.1312.
  13. [13]
    O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, arXiv:1205.1516 [INSPIRE].
  14. [14]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    V.G. Drinfeld, Quasi Hopf algebras, Leningrad Math. J. 1 (1989) 1419.MathSciNetGoogle Scholar
  17. [17]
    V.G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \( Gal\left( {{{{\overline{\mathbb{Q}}}} \left/ {\mathbb{Q}} \right.}} \right) \), Leningrad Math. J. 2 (1991) 829.MathSciNetGoogle Scholar
  18. [18]
    Y. Ihara, The Galois representation arising from \( {{\mathbb{P}}^1} - \left\{ {0,1,\infty } \right\} \) and Tate twists of even degree”, Galois Groups over Q, Publ. MSRI 16, Springer, Germany (1989), pg. 299.Google Scholar
  19. [19]
    Y. Ihara, On the stable derivation algebra associated with some braid groups, Israel J. Math. 80 (1992) 135.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    V. Knizhnik and A. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    Z. Bern, J. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].MathSciNetADSGoogle Scholar
  23. [23]
    N. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  24. [24]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [INSPIRE].
  25. [25]
    N. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    M.B. Green and J.H. Schwarz, Supersymmetrical dual string theory. 2. Vertices and trees, Nucl. Phys. B 198 (1982) 252 [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Kitazawa, Effective Lagrangian for open superstring from five point function, Nucl. Phys. B 289 (1987) 599 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Remiddi and J. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    J. Blumlein, D. Broadhurst and J. Vermaseren, The multiple zeta value data mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  30. [30]
    P. Deligne and A.B. Goncharov, Groupes fondamentaux motiviques de Tate mixte (in French), Annales scientifiques de lÉcole Normale Supérieure 38 (2005) 1.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    F. Brown, Depth-graded motivic multiple zeta values, talk given at Quantum Field Theory, Periods and Polylogarithms III, Berlin Germany June 25–29 2012.Google Scholar
  32. [32]
    A. Varchenko, Special functions, KZ type equations, and representation theory, in CBMS Regional Conference Series in Mathematics, 98, published for the Conference Board of the Mathematical Sciences, Washington DC, by the American Mathematical Society, Providence RI U.S.A. (2003).Google Scholar
  33. [33]
    H. Kawai, D. Lewellen and S.H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.PH-TH, CERN, Case C01600Geneva 23Switzerland
  2. 2.LAPTH, Université de Savoie, CNRSAnnecy-le-Vieux CedexFrance

Personalised recommendations