Skip to main content

Worldsheet instanton corrections to 52-brane geometry

Abstract

We study worldsheet instanton corrections to the exotic \( 5_2^2-\mathrm{brane} \) geometry in type II string theory. The BPS vortices in the \( \mathcal{N} \) = (4, 4) gauged linear sigma model modify the geometry of the \( 5_2^2-\mathrm{brane} \). We find that the modification of the geometry is understood by the localization in the T-dualized winding direction.

This is a preview of subscription content, access via your institution.

References

  1. T. Buscher, A symmetry of the string background field equations, Phys. Lett. B 194 (1987) 59 [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  2. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  3. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  4. J. de Boer and M. Shigemori, Exotic branes in string theory, arXiv:1209.6056 [ inSPIRE].

  5. T. Kikuchi, T. Okada and Y. Sakatani, Rotating string in doubled geometry with generalized isometries, Phys. Rev. D 86 (2012) 046001 [arXiv:1205.5549] [ inSPIRE].

    ADS  Google Scholar 

  6. F. Hassler and D. Liist, Non-commutative/non-associative IIA ( IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [ inSPIRE].

    ADS  Article  Google Scholar 

  7. E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  8. D.R. Morrison and M.R. Plesser, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B 440 (1995) 279 [hep-th/9412236] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  9. T. Kimura and S. Sasaki, Gauged linear a-model for exotic five-brane, accepted by Nucl. Phys. B, arXiv: 1304.4061 [ inSPIRE].

  10. D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [ inSPIRE].

    ADS  Article  Google Scholar 

  11. J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  12. K. Okuyama, Linear a-models of H and KK monopoles, JHEP 08 (2005) 089 [hep-th/0508097] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  13. J. Gates, S.J., C. Hull and M. Rocek, Twisted multiplets and new supersymmetric nonlinear a-models, Nucl. Phys. B 248 (1984) 157 [ inSPIRE].

  14. C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotie instantons and solitons, Nucl. Phys. B 359 (1991) 611 [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  15. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [ inSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. C.M. Hull, Doubled geometry and T-folds, JHEP 07 (2007) 080 [hep-th/0605149] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  17. S. Jensen, The KK-monopole/NS5-brane in doubled geometry, JHEP 07 (2011) 088 [arXiv :1106.1174] [ inSPIRE].

  18. H. Ooguri and C. Vafa, Summing up D instantons, Phys. Rev. Lett. 77 (1996) 3296 [hep-th/9608079] [ inSPIRE].

    MathSciNet  ADS  Article  MATH  Google Scholar 

  19. M. Rocek and E.P. Verlinde, Duality, quotients and currents, Nucl. Phys. B 373 (1992) 630 [hep-th/9110053] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  20. S.R. Coleman, There are no goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [ inSPIRE].

    ADS  Article  MATH  Google Scholar 

  21. N. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one-dimensional or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17 (1966) 1133 [ inSPIRE].

    ADS  Article  Google Scholar 

  22. I. Affleck, On constrained instantons, Nucl. Phys. B 191 (1981) 429 [ inSPIRE].

    ADS  Article  Google Scholar 

  23. A. Abrikosov, On the Magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [Zh. Eksp. Teor. Fiz. 32 (1957) 1442] [ inSPIRE].

    Google Scholar 

  24. H.B. Nielsen and P. Olesen, Vortex line models for dual strings, Nucl. Phys. B 61 (1973) 45 [ inSPIRE].

    ADS  Article  Google Scholar 

  25. H. de Vega and F. Schaposnik, A classical vortex solution of the abelian Higgs model, Phys. Rev. D 14 (1976) 1100 [ inSPIRE].

    ADS  Google Scholar 

  26. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [ inSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Sasaki.

Additional information

ArXiv ePrint: 1305.4439

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kimura, T., Sasaki, S. Worldsheet instanton corrections to 52-brane geometry. J. High Energ. Phys. 2013, 126 (2013). https://doi.org/10.1007/JHEP08(2013)126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)126

Keywords

  • p-branes
  • Solitons Monopoles and Instantons
  • String Duality
  • Sigma Models