Skip to main content
Log in

Stringy Schrödinger truncations

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Motivated by the desire to better understand finite-temperature holography for three-dimensional Schrödinger spacetimes, we: i) construct a four-parameter family of warped black string solutions of type IIB supergravity and ii) find the first consistent truncations of type IIB string theory to three dimensions that admit both supersymmetric Schrödinger solutions and warped generalizations of the BTZ black hole.

Our analysis reveals a number of interesting features. One is that the thermodynamic properties of all the warped black strings, as well as the asymptotic symmetry group data, are identical to those of BTZ, in an appropriate parametrization. A more striking feature is that the spectrum of linearized perturbations around the various supersymmetric Schrödinger vacua oftentimes contains modes that carry energy flux through the spacetime boundary, which are usually believed to be unstable. A preliminary analysis indicates that, at least in the case of most interest, these modes do not lead to an instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.M. Maldacena and A. Strominger, Black hole grey body factors and D-brane spectroscopy, Phys. Rev. D 55 (1997) 861 [hep-th/9609026] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. J.M. Maldacena and A. Strominger, Universal low-energy dynamics for rotating black holes, Phys. Rev. D 56 (1997) 4975 [hep-th/9702015] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. M. Cvetič and F. Larsen, General rotating black holes in string theory: grey body factors and event horizons, Phys. Rev. D 56 (1997) 4994 [hep-th/9705192] [INSPIRE].

    ADS  Google Scholar 

  6. D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett. 88 (2002) 151301 [hep-th/0112055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: a vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. H.K. Kunduri and J. Lucietti, A classification of near-horizon geometries of extremal vacuum black holes, J. Math. Phys. 50 (2009) 082502 [arXiv:0806.2051] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. I. Bredberg, T. Hartman, W. Song and A. Strominger, Black hole superradiance from Kerr/CFT, JHEP 04 (2010) 019 [arXiv:0907.3477] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Cvetič and F. Larsen, Greybody factors and charges in Kerr/CFT, JHEP 09 (2009) 088 [arXiv:0908.1136] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Hartman, W. Song and A. Strominger, Holographic derivation of Kerr-Newman scattering amplitudes for general charge and spin, JHEP 03 (2010) 118 [arXiv:0908.3909] [INSPIRE].

    Article  ADS  Google Scholar 

  14. C.-M. Chen, Y.-M. Huang and S.-J. Zou, Holographic duals of near-extremal Reissner-Nordstrom black holes, JHEP 03 (2010) 123 [arXiv:1001.2833] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. A. Castro, A. Maloney and A. Strominger, Hidden conformal symmetry of the Kerr black hole, Phys. Rev. D 82 (2010) 024008 [arXiv:1004.0996] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. M. Cvetič and F. Larsen, Conformal symmetry for general black holes, JHEP 02 (2012) 122 [arXiv:1106.3341] [INSPIRE].

    Article  ADS  Google Scholar 

  17. M. Cvetič and F. Larsen, Conformal symmetry for black holes in four dimensions, JHEP 09 (2012) 076 [arXiv:1112.4846] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Cvetič and G. Gibbons, Conformal symmetry of a black hole as a scaling limit: a black hole in an asymptotically conical box, JHEP 07 (2012) 014 [arXiv:1201.0601] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M. Baggio, J. de Boer, J.I. Jottar and D.R. Mayerson, Conformal symmetry for black holes in four dimensions and irrelevant deformations, JHEP 04 (2013) 084 [arXiv:1210.7695] [INSPIRE].

    Article  ADS  Google Scholar 

  20. O.J. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08 (2009) 101 [arXiv:0906.2380] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No dynamics in the extremal Kerr throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Guica and A. Strominger, Microscopic realization of the Kerr/CFT correspondence, JHEP 02 (2011) 010 [arXiv:1009.5039] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. S. El-Showk and M. Guica, Kerr/CFT, dipole theories and nonrelativistic CFTs, JHEP 12 (2012) 009 [arXiv:1108.6091] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Guica, K. Skenderis, M. Taylor and B.C. van Rees, Holography for Schrödinger backgrounds, JHEP 02 (2011) 056 [arXiv:1008.1991] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Bergman and O.J. Ganor, Dipoles, twists and noncommutative gauge theory, JHEP 10 (2000) 018 [hep-th/0008030] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Bergman, K. Dasgupta, O.J. Ganor, J.L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65 (2002) 066005 [hep-th/0103090] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. D. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Detournay, T. Hartman and D.M. Hofman, Warped conformal field theory, Phys. Rev. D 86 (2012) 124018 [arXiv:1210.0539] [INSPIRE].

    ADS  Google Scholar 

  30. D.M. Hofman and A. Strominger, Chiral scale and conformal invariance in 2D quantum field theory, Phys. Rev. Lett. 107 (2011) 161601 [arXiv:1107.2917] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Castro and F. Larsen, Near extremal Kerr entropy from AdS 2 quantum gravity, JHEP 12 (2009) 037 [arXiv:0908.1121] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. B.C. van Rees, Correlation functions for Schrödinger backgrounds, arXiv:1206.6507 [INSPIRE].

  33. M. Guica, A Fefferman-Graham-like expansion for null warped AdS 3, arXiv:1111.6978 [INSPIRE].

  34. S.F. Ross and O. Saremi, Holographic stress tensor for non-relativistic theories, JHEP 09 (2009) 009 [arXiv:0907.1846] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. J. Hartong and B. Rollier, Asymptotically Schrödinger space-times: TsT transformations and thermodynamics, JHEP 01 (2011) 084 [arXiv:1009.4997] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. D. Anninos, G. Compere, S. de Buyl, S. Detournay and M. Guica, The curious case of null warped space, JHEP 11 (2010) 119 [arXiv:1005.4072] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Nutku, Exact solutions of topologically massive gravity with a cosmological constant, Class. Quant. Grav. 10 (1993) 2657 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. K.A. Moussa, G. Clement and C. Leygnac, The black holes of topologically massive gravity, Class. Quant. Grav. 20 (2003) L277 [gr-qc/0303042] [INSPIRE].

    Article  ADS  Google Scholar 

  39. D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. K. Skenderis, M. Taylor and B.C. van Rees, Topologically massive gravity and the AdS/CFT correspondence, JHEP 09 (2009) 045 [arXiv:0906.4926] [INSPIRE].

    Article  ADS  Google Scholar 

  41. T. Andrade and D. Marolf, No chiral truncation of quantum log gravity?, JHEP 03 (2010) 029 [arXiv:0909.0727] [INSPIRE].

    Article  ADS  Google Scholar 

  42. E. O Colgain and H. Samtleben, 3D gauged supergravity from wrapped M5-branes with AdS/CMT applications, JHEP 02 (2011) 031 [arXiv:1012.2145] [INSPIRE].

    Article  Google Scholar 

  43. S. Moroz, Below the Breitenlohner-Freedman bound in the nonrelativistic AdS/CFT correspondence, Phys. Rev. D 81 (2010) 066002 [arXiv:0911.4060] [INSPIRE].

    ADS  Google Scholar 

  44. S.A. Hartnoll and K. Yoshida, Families of IIB duals for nonrelativistic CFTs, JHEP 12 (2008) 071 [arXiv:0810.0298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times II: particle and field probes of the causal structure, JHEP 07 (2010) 069 [arXiv:1005.0760] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. M. Alishahiha and O.J. Ganor, Twisted backgrounds, PP waves and nonlocal field theories, JHEP 03 (2003) 006 [hep-th/0301080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. I. Bena, N. Bobev and N.P. Warner, Spectral flow and the spectrum of multi-center solutions, Phys. Rev. D 77 (2008) 125025 [arXiv:0803.1203] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  48. I. Bena, M. Guica and W. Song, Un-twisting the NHEK with spectral flows, JHEP 03 (2013) 028 [arXiv:1203.4227] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. W. Song and A. Strominger, Warped AdS 3 /dipole-CFT duality, JHEP 05 (2012) 120 [arXiv:1109.0544] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Kraus and E. Perlmutter, Universality and exactness of Schrödinger geometries in string and M-theory, JHEP 05 (2011) 045 [arXiv:1102.1727] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S. Deger, A. Kaya, E. Sezgin and P. Sundell, Spectrum of D = 6, N = 4b supergravity on AdS in three-dimensions ×S 3, Nucl. Phys. B 536 (1998) 110 [hep-th/9804166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. P. Townsend, A new anomaly free chiral supergravity theory from compactification on K3, Phys. Lett. B 139 (1984) 283 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. N. Bobev and B.C. van Rees, Schrödinger deformations of AdS 3 × S 3, JHEP 08 (2011) 062 [arXiv:1102.2877] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. G. Compere, Note on the first law with p-form potentials, Phys. Rev. D 75 (2007) 124020 [hep-th/0703004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  56. G. Compere, K. Murata and T. Nishioka, Central charges in extreme black hole/CFT correspondence, JHEP 05 (2009) 077 [arXiv:0902.1001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. G. Compere, Symmetries and conservation laws in Lagrangian gauge theories with applications to the mechanics of black holes and to gravity in three dimensions, arXiv:0708.3153 [INSPIRE].

  58. G. Compere and S. Detournay, Centrally extended symmetry algebra of asymptotically Godel spacetimes, JHEP 03 (2007) 098 [hep-th/0701039] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non-relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Duff, H. Lü and C. Pope, AdS 3 × S 3 (un)twisted and squashed and an O(2, 2, \( \mathbb{Z} \)) multiplet of dyonic strings, Nucl. Phys. B 544 (1999) 145 [hep-th/9807173] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].

    Article  ADS  Google Scholar 

  62. A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].

    Article  ADS  Google Scholar 

  63. T. Azeyanagi, D.M. Hofman, W. Song and A. Strominger, The spectrum of strings on warped AdS 3 × S 3, JHEP 04 (2013) 078 [arXiv:1207.5050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. M. Blau, J. Hartong and B. Rollier, Geometry of Schrödinger space-times, global coordinates and harmonic trapping, JHEP 07 (2009) 027 [arXiv:0904.3304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  65. G. Compere and D. Marolf, Setting the boundary free in AdS/CFT, Class. Quant. Grav. 25 (2008) 195014 [arXiv:0805.1902] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  67. B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. T. Andrade and D. Marolf, AdS/CFT beyond the unitarity bound, JHEP 01 (2012) 049 [arXiv:1105.6337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Andrade, J.I. Jottar and R.G. Leigh, Boundary conditions and unitarity: the Maxwell-Chern-Simons system in AdS 3 /CFT 2, JHEP 05 (2012) 071 [arXiv:1111.5054] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  71. T. Andrade and S.F. Ross, Boundary conditions for scalars in Lifshitz, Class. Quant. Grav. 30 (2013) 065009 [arXiv:1212.2572] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. C. Keeler, Scalar boundary conditions in Lifshitz spacetimes, arXiv:1212.1728 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Guica.

Additional information

ArXiv ePrint: 1212.6792

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detournay, S., Guica, M. Stringy Schrödinger truncations. J. High Energ. Phys. 2013, 121 (2013). https://doi.org/10.1007/JHEP08(2013)121

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)121

Keywords

Navigation