Skip to main content
Log in

Transmission matrices in \( \mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}} \) & \( {{\mathfrak{U}}_q}\left( {\mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}}} \right) \) quantum spin chains

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The \( \mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}} \) and \( {{\mathfrak{U}}_q}\left( {\mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}}} \right) \) quantum spin chains in the presence of integrable spin impurities are considered. Within the Bethe ansatz formulation, we derive the associated transmission amplitudes, and the corresponding transmission matrices — representations of the underlying quadratic algebra — that physically describe the interaction between the various particle-like excitations displayed by these models and the spin impurity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Delfino, G. Mussardo and P. Simonetti, Statistical models with a line of defect, Phys. Lett. B 328 (1994) 123 [hep-th/9403049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. G. Delfino, G. Mussardo and P. Simonetti, Scattering theory and correlation functions in statistical models with a line of defect, Nucl. Phys. B 432 (1994) 518 [hep-th/9409076] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R. Konik and A. LeClair, Purely transmitting defect field theories, Nucl. Phys. B 538 (1999) 587 [hep-th/9703085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Tsvelik and P.B. Wiegmann, Exact results in the theory of magnetic alloys, Adv. Phys. 32 (1983) 453.

    Article  ADS  Google Scholar 

  5. N. Andrei and H. Johannesson, Heisenberg chain with impurities (an integrable model), Phys. Lett. A 100 (1984) 108.

    Article  MathSciNet  ADS  Google Scholar 

  6. H. Frahm and A.A. Zvyagin, The open spin chain with impurity: an exact solution, J. Phys. Condens. Matter 9 (1997) 9939.

    Article  ADS  Google Scholar 

  7. P. Bowcock, E. Corrigan and C. Zambon, Some aspects of jump-defects in the quantum sine-Gordon model, JHEP 08 (2005) 023 [hep-th/0506169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Corrigan and C. Zambon, A transmission matrix for a fused pair of integrable defects in the sine-Gordon model, J. Phys. A 43 (2010) 345201 [arXiv:1006.0939] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. Z. Bajnok and A. George, From defects to boundaries, Int. J. Mod. Phys. A 21 (2006) 1063 [hep-th/0404199] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. Z. Bajnok, Equivalences between spin models induced by defects, J. Stat. Mech. 0606 (2006) P06010 [hep-th/0601107] [INSPIRE].

    Google Scholar 

  11. Z. Bajnok and Z. Simon, Solving topological defects via fusion, Nucl. Phys. B 802 (2008) 307 [arXiv:0712.4292] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Weston, An algebraic setting for defects in the XXZ and sine-Gordon models, arXiv:1006.1555 [INSPIRE].

  13. M. Mintchev, É. Ragoucy and P. Sorba, Scattering in the presence of a reflecting and transmitting impurity, Phys. Lett. B 547 (2002) 313 [hep-th/0209052] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M. Mintchev, É. Ragoucy and P. Sorba, Reflection transmission algebras, J. Phys. A 36 (2003) 10407 [hep-th/0303187] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  15. V. Caudrelier, M. Mintchev and É. Ragoucy, The quantum non-linear Schrödinger model with point-like defect, J. Phys. A 37 (2004) L367 [hep-th/0404144] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. E. Corrigan and C. Zambon, Jump-defects in the nonlinear Schrodinger model and other non-relativistic field theories, Nonlinearity 19 (2006) 1447 [nlin/0512038].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. P. Bowcock, E. Corrigan and C. Zambon, Affine Toda field theories with defects, JHEP 01 (2004) 056 [hep-th/0401020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. E. Corrigan and C. Zambon, Comments on defects in the a(r) Toda field theories, J. Phys. A 42 (2009) 304008 [arXiv:0902.1307] [INSPIRE].

    MathSciNet  Google Scholar 

  19. E. Corrigan and C. Zambon, On purely transmitting defects in affine Toda field theory, JHEP 07 (2007) 001 [arXiv:0705.1066] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. E. Corrigan and C. Zambon, A new class of integrable defects, J. Phys. A 42 (2009) 475203 [arXiv:0908.3126] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. E. Corrigan and C. Zambon, Integrable defects in affine Toda field theory and infinite dimensional representations of quantum groups, Nucl. Phys. B 848 (2011) 545 [arXiv:1012.4186] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. V. Caudrelier, On a systematic approach to defects in classical integrable field theories, Int. J. Geom. Meth. Mod. Phys. 5 (2008) 1085 [arXiv:0704.2326].

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Habibullin and A. Kundu, Quantum and classical integrable sine-Gordon model with defect, Nucl. Phys. B 795 (2008) 549 [arXiv:0709.4611] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. F. Nemes, Semiclassical analysis of defect sine-Gordon theory, Int. J. Mod. Phys. A 25 (2010) 4493 [arXiv:0909.3268] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. Doikou, Defects in the discrete non-linear Schrödinger model, Nucl. Phys. B 854 (2012) 153 [arXiv:1106.1602] [INSPIRE].

  26. Avan, Liouville integrable defects: the non-linear Schrödinger paradigm, JHEP 01 (2012) 040 [arXiv:1110.4728] [INSPIRE].

  27. Avan, The sine-Gordon model with integrable defects revisited, JHEP 11 (2012) 008 [arXiv:1205.1661] [INSPIRE].

  28. A. Aguirre, T. Araujo, J. Gomes and A. Zimerman, Type-II Bäcklund transformations via gauge transformations, JHEP 12 (2011) 056 [arXiv:1110.1589] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A.R. Aguirre, Inverse scattering approach for massive Thirring models with integrable type-II defects, J. Phys. A 45 (2012) 205205 [arXiv:1111.5249] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. A. Doikou and N. Karaiskos, σ-models in the presence of dynamical point-like defects, Nucl. Phys. B 867 (2013) 872 [arXiv:1207.5503] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Doikou and N. Karaiskos, Transmission amplitudes from Bethe ansatz equations, JHEP 02 (2013) 142 [arXiv:1212.0195] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. P.P. Kulish and E.K. Sklyanin, Quantum spectral transform method. Recent developments, Lecture Notes in Physics volume 151, Springer, U.S.A. (1982).

  33. L.A. Takhtajan, Quamtum groups. Introduction to quantum groups and intergable massive models of quantum field theory, World Scientific, Singapore (1990).

  34. V.E. Korepin, N.M. Bogoliubov and A.G. Izergin, Quantum inverse scattering method, correlation functions and algebraic bethe ansatz, Cambridge University Press, Cambridge U.K. (1993).

  35. A. Arnaudon, N. Crampé, A. Doikou, L. Frappat and É. Ragoucy, Analytical Bethe Ansatz for closed and open gl(n)-spin chains in any representation, J. Stat. Mech. 0502 (2005) P02007 [math-ph/0411021] [INSPIRE].

    Article  Google Scholar 

  36. C.-N. Yang, Some exact results for the many body problems in one dimension with repulsive delta function interaction, Phys. Rev. Lett. 19 (1967) 1312 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. L. Faddeev and L. Takhtajan, Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model, J. Sov. Math. 24 (1984) 241 [INSPIRE].

    Article  MATH  Google Scholar 

  38. L. Faddeev, Algebraic aspects of Bethe Ansatz, Int. J. Mod. Phys. A 10 (1995) 1845 [hep-th/9404013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Doikou, Bulk and boundary S matrices for the SU(N) chain, Nucl. Phys. B 521 (1998) 547 [hep-th/9803118] [INSPIRE].

  40. N. Andrei and C. Destri, Dynamical symmetry breaking and fractionization in a new integrable model, Nucl. Phys. B 231 (1984) 445 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. Doikou, Simplified calculation of boundary S matrices, J. Phys. A 30 (1997) L507 [hep-th/9705187] [INSPIRE].

  42. Doikou, Factorization of multiparticle scattering in the Heisenberg spin chain, Mod. Phys. Lett. A 12 (1997) 2591 [hep-th/9707155] [INSPIRE].

  43. M. Jimbo, A q difference analog of U (g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. M. Jimbo, A q analog of U (Gl(n + 1)), Hecke Algebra and the Yang-Baxter Equation, Lett. Math. Phys. 11 (1986) 247 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. D. Arnaudon, N. Crampé, A. Doikou and L. Frappat, Spectrum and Bethe ansatz equations for the U q (gl(N)) closed and open spin chains in any representation, math-ph/0512037 [INSPIRE].

  46. Doikou, Soliton S matrices for the critical A N1−1 chain, Phys. Lett. B 462 (1999) 121 [hep-th/9906069] [INSPIRE].

  47. L.A. Takhtajan and L.D. Faddeev, The quantum inverse problem method and the XYZ Heisenberg model, Russian Math. Surv. 34 (1979) 13.

    ADS  Google Scholar 

  48. L.A. Takhtajan, The quantum inverse problem method and the XYZ Heisenberg model, Physica D3 (1981) 231

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Doikou.

Additional information

ArXiv ePrint: 1304.5901

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doikou, A. Transmission matrices in \( \mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}} \) & \( {{\mathfrak{U}}_q}\left( {\mathfrak{g}{{\mathfrak{l}}_{\mathcal{N}}}} \right) \) quantum spin chains. J. High Energ. Phys. 2013, 103 (2013). https://doi.org/10.1007/JHEP08(2013)103

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)103

Keywords

Navigation