Skip to main content
Log in

Entanglement thermodynamics

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study entanglement entropy for an excited state by making use of the proposed holographic description of the entanglement entropy. For a sufficiently small entangling region and with reasonable identifications we find an equation between entanglement entropy and energy which is reminiscent of the first law of thermodynamics. We then suggest four statements which might be thought of as four laws of entanglement thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, Thermodynamical property of entanglement entropy for excited states, Phys. Rev. Lett. 110 (2013) 091602 [arXiv:1212.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  3. D.V. Fursaev, ‘Thermodynamicsof minimal surfaces and entropic origin of gravity, Phys. Rev. D 82 (2010) 064013 [Erratum ibid. D 86 (2012) 049903] [arXiv:1006.2623] [INSPIRE].

    ADS  Google Scholar 

  4. W.-Z. Guo, S. He and J. Tao, Note on entanglement temperature for low thermal excited states in higher derivative gravity, JHEP 08 (2013) 050 [arXiv:1305.2682] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP 08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  7. A.E. Mosaffa, Symmetric orbifolds and entanglement entropy for primary excitations in two dimensional CFT, arXiv:1208.3204 [INSPIRE].

  8. A.F. Astaneh and A.E. Mosaffa, Holographic entanglement entropy for excited states in two dimensional CFT, JHEP 03 (2013) 135 [arXiv:1301.1495] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. W. Fischler and S. Kundu, Strongly coupled gauge theories: high and low temperature behavior of non-local observables, JHEP 05 (2013) 098 [arXiv:1212.2643] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. E.H. Lieb and M.B. Ruskai, A fundamental property of quantum-mechanical entropy, Phys. Rev. Lett. 30 (1973) 434 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Lieb and M. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of entanglement entropy from Einstein equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].

    ADS  Google Scholar 

  16. M. Nozaki, T. Numasawa and T. Takayanagi, Holographic local quenches and entanglement density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, arXiv:1304.4926 [INSPIRE].

  19. M. Fujita, T. Nishioka and T. Takayanagi, Geometric entropy and hagedorn/deconfinement transition, JHEP 09 (2008) 016 [arXiv:0806.3118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. I. Bah, L.A. Pando Zayas and C.A. Terrero-Escalante, Holographic geometric entropy at finite temperature from black holes in global Anti de Sitter spaces, Int. J. Mod. Phys. A 27 (2012) 1250048 [arXiv:0809.2912] [INSPIRE].

    Article  ADS  Google Scholar 

  21. D. Allahbakhshi and M. Alishahiha, Probing fractionalized charges, arXiv:1301.4815 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Allahbakhshi.

Additional information

ArXiv ePrint: 1305.2728

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alishahiha, M., Allahbakhshi, D. & Naseh, A. Entanglement thermodynamics. J. High Energ. Phys. 2013, 102 (2013). https://doi.org/10.1007/JHEP08(2013)102

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)102

Keywords

Navigation