Skip to main content
Log in

Muon g-2 and 125 GeV Higgs in split-family supersymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We discuss the minimal supersymmetric standard model with “split-family” spectrum where the sfermions in the first two generations are in the hundreds GeV to a TeV range while the sfermions in the third generation are in the range of tens TeV. With the split-family spectrum, the deviation of the muon g − 2 and the observed Higgs boson mass are explained simultaneously. It is predicted that the gluino and the squarks in the first two generations are within the reach of the LHC experiments in most favored parameter space for the universal gaugino mass, which can be tested by searching for events with missing transverse energy or events with stable charged massive particles. We also point out that the split-family scenario can be consistent with the focus point scenario for the non-universal gaugino masses where the required μ-term is in the hundreds GeV range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. Y. Okada, M. Yamaguchi and T. Yanagida, Upper bound of the lightest Higgs boson mass in the minimal supersymmetric standard model, Prog. Theor. Phys. 85 (1991) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y. Okada, M. Yamaguchi and T. Yanagida, Renormalization group analysis on the Higgs mass in the softly broken supersymmetric standard model, Phys. Lett. B 262 (1991) 54 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.R. Ellis, G. Ridolfi and F. Zwirner, Radiative corrections to the masses of supersymmetric Higgs bosons, Phys. Lett. B 257 (1991) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  6. H.E. Haber and R. Hempfling, Can the mass of the lightest Higgs boson of the minimal supersymmetric model be larger than m(Z)?, Phys. Rev. Lett. 66 (1991) 1815 [INSPIRE].

    Article  ADS  Google Scholar 

  7. J.R. Ellis, G. Ridolfi and F. Zwirner, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B 262 (1991) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2= 10-100TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE].

    ADS  Google Scholar 

  11. E. Dudas, C. Papineau and S. Pokorski, Moduli stabilization and uplifting with dynamically generated F-terms, JHEP 02 (2007) 028 [hep-th/0610297] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. H. Abe, T. Higaki, T. Kobayashi and Y. Omura, Moduli stabilization, F-term uplifting and soft supersymmetry breaking terms, Phys. Rev. D 75 (2007) 025019 [hep-th/0611024] [INSPIRE].

    ADS  Google Scholar 

  13. R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].

    ADS  Google Scholar 

  14. A. Linde, Y. Mambrini and K.A. Olive, Supersymmetry Breaking due to Moduli Stabilization in String Theory, Phys. Rev. D 85 (2012) 066005 [arXiv:1111.1465] [INSPIRE].

    ADS  Google Scholar 

  15. E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].

    Article  ADS  Google Scholar 

  16. N. Arkani-Hamed, IFT Inaugural Conference (2011), http://www.ift.uam.es/workshops/Xmas11/?q=node/2.

  17. N. Arkani-Hamed, SavasFest: Celebration of the Life and Work of Savas Dimopoulos (2012), http://www.stanford.edu/dept/physics/events/2012/SavasFest/slides/Nima Arkani-Hamed.eps.

  18. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].

  19. K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2) μ and \( \alpha \left( {M_Z^2} \right) \) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g-2 and to α MZ , Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].

  21. J.L. Lopez, D.V. Nanopoulos and X. Wang, Large (g-2)-mu in SU(5) × U(1) supergravity models, Phys. Rev. D 49 (1994) 366 [hep-ph/9308336] [INSPIRE].

    ADS  Google Scholar 

  22. U. Chattopadhyay and P. Nath, Probing supergravity grand unification in the Brookhaven g-2 experiment, Phys. Rev. D 53 (1996) 1648 [hep-ph/9507386] [INSPIRE].

    ADS  Google Scholar 

  23. T. Moroi, The Muon anomalous magnetic dipole moment in the minimal supersymmetric standard model, Phys. Rev. D 53 (1996) 6565 [Erratum ibid. D 56 (1997) 4424] [hep-ph/9512396] [INSPIRE].

  24. J.L. Evans, M. Ibe and T.T. Yanagida, Relatively Heavy Higgs Boson in More Generic Gauge Mediation, Phys. Lett. B 705 (2011) 342 [arXiv:1107.3006] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J.L. Evans, M. Ibe, S. Shirai and T.T. Yanagida, A 125GeV Higgs Boson and Muon g-2 in More Generic Gauge Mediation, Phys. Rev. D 85 (2012) 095004 [arXiv:1201.2611] [INSPIRE].

    ADS  Google Scholar 

  26. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs Mass and Muon Anomalous Magnetic Moment in Supersymmetric Models with Vector-Like Matters, Phys. Rev. D 84 (2011) 075017 [arXiv:1108.3071] [INSPIRE].

    ADS  Google Scholar 

  27. J.L. Evans, M. Ibe and T.T. Yanagida, Probing Extra Matter in Gauge Mediation Through the Lightest Higgs Boson Mass, arXiv:1108.3437 [INSPIRE].

  28. T. Moroi, R. Sato and T.T. Yanagida, Extra Matters Decree the Relatively Heavy Higgs of Mass about 125 GeV in the Supersymmetric Model, Phys. Lett. B 709 (2012) 218 [arXiv:1112.3142] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Endo, K. Hamaguchi, S. Iwamoto and N. Yokozaki, Higgs mass, muon g-2 and LHC prospects in gauge mediation models with vector-like matters, Phys. Rev. D 85 (2012) 095012 [arXiv:1112.5653] [INSPIRE].

    ADS  Google Scholar 

  30. S.P. Martin and J.D. Wells, Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~ 125 GeV Higgs boson, Phys. Rev. D 86 (2012) 035017 [arXiv:1206.2956] [INSPIRE].

    ADS  Google Scholar 

  31. M. Endo, K. Hamaguchi, S. Iwamoto, K. Nakayama and N. Yokozaki, Higgs mass and muon anomalous magnetic moment in the U(1) extended MSSM, Phys. Rev. D 85 (2012) 095006 [arXiv:1112.6412] [INSPIRE].

    ADS  Google Scholar 

  32. M. Ibe, S. Matsumoto, T.T. Yanagida and N. Yokozaki, Heavy Squarks and Light Sleptons in Gauge Mediation From the viewpoint of 125 GeV Higgs Boson and Muon g-2, JHEP 03 (2013) 078 [arXiv:1210.3122] [INSPIRE].

    Article  ADS  Google Scholar 

  33. Muon G-2 collaboration, G. Bennett et al., Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

    ADS  Google Scholar 

  34. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g-2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M. Ciuchini et al., Delta M(K) and epsilon(K) in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. A.D. Box and X. Tata, Threshold and Flavour Effects in the Renormalization Group Equations of the MSSM II: Dimensionful couplings, Phys. Rev. D 79 (2009) 035004 [Erratum ibid. D 82 (2010) 119905] [arXiv:0810.5765] [INSPIRE].

  38. G.-C. Cho, K. Hagiwara, Y. Matsumoto and D. Nomura, The MSSM confronts the precision electroweak data and the muon g-2, JHEP 11 (2011) 068 [arXiv:1104.1769] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Birkedal-Hansen and B.D. Nelson, Relic neutralino densities and detection rates with nonuniversal gaugino masses, Phys. Rev. D 67 (2003) 095006 [hep-ph/0211071] [INSPIRE].

    ADS  Google Scholar 

  40. CMS collaboration, Searches for Long-lived Charged Particles, CMS PAS EXO-12-026.

  41. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector using final states with jets and missing transverse momentum and 5.8 fb −1 of \( \sqrt{s}=8 \) TeV proton-proton collision data, ATLAS-CONF-2012-109 (2012).

  42. J.L. Feng, K.T. Matchev and T. Moroi, Multi - TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].

    Article  ADS  Google Scholar 

  43. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  44. T. Yanagida, Naturally light Higgs doublets in the supersymmetric grand unified theories with dynamical symmetry breaking, Phys. Lett. B 344 (1995) 211 [hep-ph/9409329] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Hotta, K. Izawa and T. Yanagida, Dynamical models for light Higgs doublets in supersymmetric grand unified theories, Phys. Rev. D 53 (1996) 3913 [hep-ph/9509201] [INSPIRE].

    ADS  Google Scholar 

  46. T. Hotta, K. Izawa and T. Yanagida, Natural unification with a supersymmetric SO(10)-GUT×SO(6)-H gauge theory, Phys. Rev. D 54 (1996) 6970 [hep-ph/9602439] [INSPIRE].

    ADS  Google Scholar 

  47. J. Hisano and T. Yanagida, An N not = 2 SUSY gauge model for dynamical breaking of the grand unified SU(5) symmetry, Mod. Phys. Lett. A 10 (1995) 3097 [hep-ph/9510277] [INSPIRE].

    Article  ADS  Google Scholar 

  48. K. Izawa and T. Yanagida, R invariant natural unification, Prog. Theor. Phys. 97 (1997) 913 [hep-ph/9703350] [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Ibe and T. Watari, Upper bound of proton life time in product group unification, Phys. Rev. D 67 (2003) 114021 [hep-ph/0303123] [INSPIRE].

    ADS  Google Scholar 

  50. T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [INSPIRE].

    Article  ADS  Google Scholar 

  51. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  52. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. JLQCD collaboration, H. Ohki et al., Nucleon strange quark content from N f  = 2 + 1 lattice QCD with exact chiral symmetry, Phys. Rev. D 87 (2013), no. 3 034509 [arXiv:1208.4185] [INSPIRE].

  54. Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  55. XENON1T collaboration, E. Aprile, The XENON1T Dark Matter Search Experiment, arXiv:1206.6288 [INSPIRE].

  56. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb-1 of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2012-154 (2012).

  57. M. Endo, K. Hamaguchi, S. Iwamoto and T. Yoshinaga, Muon g-2 vs LHC in Supersymmetric Models, arXiv:1303.4256 [INSPIRE].

  58. ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20/fb of pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-049 (2013).

  59. N. Craig, S. Dimopoulos and T. Gherghetta, Split families unified, JHEP 04 (2012) 116 [arXiv:1203.0572] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J.E. Kim, Inverted-effective SUSY with combined Zand gravity mediation and muon anomalous magnetic moment, Phys. Rev. D 87 (2013) 015004 [arXiv:1208.5484] [INSPIRE].

    ADS  Google Scholar 

  61. C. Liu, Topcolor assisted supersymmetry, Phys. Rev. D 61 (2000) 115001 [hep-ph/9910303] [INSPIRE].

    ADS  Google Scholar 

  62. M. Dhuria and A. Misra, (N)LSP Decays and Gravitino Dark Matter Relic Abundance in Big Divisor (nearly) SLagy D3/D7 mu-Split SUSY, Nucl. Phys. B 867 (2013) 636 [arXiv:1207.2774] [INSPIRE].

    Article  ADS  Google Scholar 

  63. T. Kugo and T. Yanagida, UNification of families based on a coset space E7/SU(5) × SU (3) × U(1), Phys. Lett. B 134 (1984) 313 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. S.K. Mandal, M. Nojiri, M. Sudano and T.T. Yanagida, Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC, JHEP 01 (2011) 131 [arXiv:1004.4164] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimi Yokozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibe, M., Yanagida, T.T. & Yokozaki, N. Muon g-2 and 125 GeV Higgs in split-family supersymmetry. J. High Energ. Phys. 2013, 67 (2013). https://doi.org/10.1007/JHEP08(2013)067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)067

Keywords

Navigation