Standard model vacuum stability and Weyl consistency conditions

Abstract

At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different β functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Elias-Miro et al., Higgs mass implications on the stability of the electroweak vacuum, Phys. Lett. B 709 (2012) 222 [arXiv:1112.3022] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    L.N. Mihaila, J. Salomon and M. Steinhauser, Gauge coupling β-functions in the standard model to three loops, Phys. Rev. Lett. 108 (2012) 151602 [arXiv:1201.5868] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Bednyakov, A. Pikelner and V. Velizhanin, Anomalous dimensions of gauge fields and gauge coupling β-functions in the standard model at three loops, JHEP 01 (2013) 017 [arXiv:1210.6873] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  4. [4]

    A. Bednyakov, A. Pikelner and V. Velizhanin, Yukawa coupling β-functions in the standard model at three loops, Phys. Lett. B 722 (2013) 336 [arXiv:1212.6829] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    K. Chetyrkin and M. Zoller, Three-loop β-functions for top-Yukawa and the Higgs self-interaction in the standard model, JHEP 06 (2012) 033 [arXiv:1205.2892] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    K. Chetyrkin and M. Zoller, β-function for the Higgs self-interaction in the standard model at three-loop level, JHEP 04 (2013) 091 [arXiv:1303.2890] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Bednyakov, A. Pikelner and V. Velizhanin, Higgs self-coupling β-function in the standard model at three loops, arXiv:1303.4364 [INSPIRE].

  8. [8]

    C. Ford, I. Jack and D. Jones, The standard model effective potential at two loops, Nucl. Phys. B 387 (1992) 373 [Erratum ibid. B 504 (1997) 551-552] [hep-ph/0111190] [INSPIRE].

  9. [9]

    F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    G. Degrassi et al., Higgs mass and vacuum stability in the standard model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    I. Masina, The Higgs boson and top quark masses as tests of electroweak vacuum stability, Phys. Rev. D 87 (2013) 053001 [arXiv:1209.0393] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    H. Osborn, Derivation of a four-dimensional c theorem, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. [14]

    I. Jack and H. Osborn, Analogs for the c theorem for four-dimensional renormalizable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  15. [15]

    H. Osborn, Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  16. [16]

    J.-F. Fortin, B. Grinstein and A. Stergiou, Limit cycles and conformal invariance, JHEP 01 (2013) 184 [arXiv:1208.3674] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  17. [17]

    M.A. Luty, J. Polchinski and R. Rattazzi, The a-theorem and the asymptotics of 4D quantum field theory, JHEP 01 (2013) 152 [arXiv:1204.5221] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  18. [18]

    O. Antipin, M. Gillioz, E. Mølgaard and F. Sannino, The a-theorem for Gauge-Yukawa theories beyond Banks-Zaks, arXiv:1303.1525 [INSPIRE].

  19. [19]

    J.L. Cardy, Is there a c-theorem in four-dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  20. [20]

    Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP 12 (2011) 099 [arXiv:1107.3987] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  21. [21]

    Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP 07 (2012) 069 [arXiv:1112.4538] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  22. [22]

    M. Holthausen, K.S. Lim and M. Lindner, Planck scale boundary conditions and the Higgs mass, JHEP 02 (2012) 037 [arXiv:1112.2415] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    O. Antipin, S. Di Chiara, M. Mojaza, E. Molgaard and F. Sannino, A perturbative realization of Miransky scaling, Phys. Rev. D 86 (2012) 085009 [arXiv:1205.6157] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    CMS collaboration, Combination of standard model higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).

  26. [26]

    J. Casas, J. Espinosa and M. Quirós, Improved Higgs mass stability bound in the standard model and implications for supersymmetry, Phys. Lett. B 342 (1995) 171 [hep-ph/9409458] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    J. Casas, J. Espinosa, M. Quirós and A. Riotto, The lightest Higgs boson mass in the minimal supersymmetric standard model, Nucl. Phys. B 436 (1995) 3 [Erratum ibid. B 439 (1995) 466-468] [hep-ph/9407389] [INSPIRE].

  28. [28]

    G. Isidori, G. Ridolfi and A. Strumia, On the metastability of the standard model vacuum, Nucl. Phys. B 609 (2001) 387 [hep-ph/0104016] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esben Mølgaard.

Additional information

ArXiv ePrint: 1306.3234

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Antipin, O., Gillioz, M., Krog, J. et al. Standard model vacuum stability and Weyl consistency conditions. J. High Energ. Phys. 2013, 34 (2013). https://doi.org/10.1007/JHEP08(2013)034

Download citation

Keywords

  • Renormalization Group
  • Conformal and W Symmetry
  • Standard Model