Skip to main content
Log in

Heavy quark density in \( \mathcal{N} \) = 4 SYM: from hedgehog to Lifshitz spacetimes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the effect of an O(N 2) density of heavy quarks in strongly coupled \( \mathcal{N} \) = 4 SUSY Yang-Mills theory in the large N limit. This is achieved in the type IIB supergravity dual by introducing a uniformly smeared density of macroscopic string sources stretching to the boundary of AdS 5× S 5. The backreacted system exhibits a flow from an AdS 5 “hedgehog” geometry to a scaling Lifshitz-like solution Lif5× S 5 with dynamical critical exponent z = 7, wherein the scaling symmetry is broken by a logarithmic running dilaton. We find an exact black brane solution within the scaling regime which describes the low temperature thermodynamics of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  3. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

    Google Scholar 

  5. J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

    Google Scholar 

  6. K. Rajagopal and F. Wilczek, The condensed matter physics of QCD, in At the frontier of particle physics, volume 3, M. Shifman ed., World Scientific, Singapore (2001), hep-ph/0011333 [INSPIRE].

  7. T. Schafer, Phases of QCD, hep-ph/0509068 [INSPIRE].

  8. M. Stephanov, QCD phase diagram: an overview, PoS(LAT2006)024 [hep-lat/0701002] [INSPIRE].

  9. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Kobayashi, D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite baryon density, JHEP 02 (2007) 016 [hep-th/0611099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Karch and A. O’Bannon, Holographic thermodynamics at finite baryon density: some exact results, JHEP 11 (2007) 074 [arXiv:0709.0570] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. K. Ghoroku, M. Ishihara and A. Nakamura, D3/D7 holographic gauge theory and chemical potential, Phys. Rev. D 76 (2007) 124006 [arXiv:0708.3706] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. F. Bigazzi, A.L. Cotrone, J. Mas, D. Mayerson and J. Tarrio, D3-D7 quark-gluon plasmas at finite baryon density, JHEP 04 (2011) 060 [arXiv:1101.3560] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Polchinski and E. Silverstein, Large-density field theory, viscosity and ’2k F singularities from string duals, arXiv:1203.1015 [INSPIRE].

  17. E. Witten, Baryons and branes in Anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].

    ADS  Google Scholar 

  18. P. Benincasa and S.P. Kumar, Strongly coupled dense matter and hedgehog black holes, work in progress.

  19. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    Google Scholar 

  20. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  21. T. Azeyanagi, W. Li and T. Takayanagi, On string theory duals of Lifshitz-like fixed points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  23. K. Goldstein, S. Kachru, S. Prakash and S.P. Trivedi, Holography of charged dilaton black holes, JHEP 08 (2010) 078 [arXiv:0911.3586] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. K. Goldstein et al., Holography of dyonic dilaton black branes, JHEP 10 (2010) 027 [arXiv:1007.2490] [INSPIRE].

    Article  ADS  Google Scholar 

  25. C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].

    Article  ADS  Google Scholar 

  26. B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz horizons, arXiv:1202.6635 [INSPIRE].

  28. A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

    Article  ADS  Google Scholar 

  30. O. Lunin, On gravitational description of Wilson lines, JHEP 06 (2006) 026 [hep-th/0604133] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  32. M. Headrick, Hedgehog black holes and the Polyakov loop at strong coupling, Phys. Rev. D 77 (2008) 105017 [arXiv:0712.4155] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  33. E. Guendelman and A. Rabinowitz, The gravitational field of a hedgehog and the evolution of vacuum bubbles, Phys. Rev. D 44 (1991) 3152 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. I. Papadimitriou and K. Skenderis, Thermodynamics of asymptotically locally AdS spacetimes, JHEP 08 (2005) 004 [hep-th/0505190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M.C. Cheng and K. Skenderis, Positivity of energy for asymptotically locally AdS spacetimes, JHEP 08 (2005) 107 [hep-th/0506123] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ferrara, M. Lledó and A. Zaffaroni, Born-Infeld corrections to D3-brane action in AdS 5× S 5 and N = 4, D = 4 primary superfields, Phys. Rev. D 58 (1998) 105029 [hep-th/9805082] [INSPIRE].

    ADS  Google Scholar 

  37. A.A. Tseytlin, On non-abelian generalization of Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M. Henningson and K. Skenderis, The holographic Weyl anomaly, JHEP 07 (1998) 023 [hep-th/9806087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. V. Balasubramanian and P. Kraus, A stress tensor for Anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02 (2005) 010 [hep-th/0501109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].

    ADS  Google Scholar 

  44. G.T. Horowitz and S.F. Ross, Naked black holes, Phys. Rev. D 56 (1997) 2180 [hep-th/9704058] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  45. K. Copsey and R. Mann, Pathologies in asymptotically Lifshitz spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  46. E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M 2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorn-deconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  50. T.J. Hollowood, S.P. Kumar and J.C. Myers, Weak coupling large-N transitions at finite baryon density, JHEP 11 (2011) 138 [arXiv:1110.0696] [INSPIRE].

    Article  ADS  Google Scholar 

  51. G. Korchemsky and A. Radyushkin, Infrared factorization, Wilson lines and the heavy quark limit, Phys. Lett. B 279 (1992) 359 [hep-ph/9203222] [INSPIRE].

    ADS  Google Scholar 

  52. C.P. Bachas, M.R. Douglas and M.B. Green, Anomalous creation of branes, JHEP 07 (1997) 002 [hep-th/9705074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  53. F. Bigazzi et al., D3-D7 quark-gluon plasmas, JHEP 11 (2009) 117 [arXiv:0909.2865] [INSPIRE].

    Article  ADS  Google Scholar 

  54. F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 02 (2007) 090 [hep-th/0612118] [INSPIRE].

    Article  ADS  Google Scholar 

  55. F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical flavors, JHEP 09 (2008) 048 [arXiv:0807.0298] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Prem Kumar.

Additional information

ArXiv ePrint: 1206.5140

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S.P. Heavy quark density in \( \mathcal{N} \) = 4 SYM: from hedgehog to Lifshitz spacetimes. J. High Energ. Phys. 2012, 155 (2012). https://doi.org/10.1007/JHEP08(2012)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)155

Keywords

Navigation