Discerning new physics in \( t\overline t \) production using top spin observables at hadron colliders

Abstract

Copious production of top-anti top quark pairs at hadron colliders has enabled various probes into the properties and interactions of top quarks. Among the various presently measured observables, the forward-backward asymmetry (FBA) in \( t\overline t \) production measured at the Tevatron significantly deviates from the standard model predictions, and many models of new physics have been invented to explain the puzzle. We consider the consistency of the simplified single-resonance models containing a color octet axial-vector (“axigluon”), color triplet or sextet weak singlet scalars, weak isodoublet scalar, flavor-changing neutral Z , or charged W vector boson with existing \( t\overline t \) production measurements. Among the considered models only an axigluon can reproduce all Tevatron observables, without being in severe tension with the recent LHC results on \( t\overline t \) production cross section, charge asymmetry and top-spin correlations. The LHC charge asymmetry measurements exclude the W and Z explanations of the Tevatron FBA anomaly. On the other hand, all scalar models predict notable deviations in several top spin observables, and the recent top spin correlation measurement using the “helicity” spin quantization axis by ATLAS already provides a significant constraint on possible explanations of the Tevatron FBA anomaly. Future precise measurements of top spin correlations and especially top polarization could differentiate between scalar t-channel models, while they are less sensitive to pure axigluon contributions.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in \( t\overline t \) production, arXiv:1107.5257 [INSPIRE].

  2. [2]

    J.H. Kuhn, How to measure the polarization of top quarks, Nucl. Phys. B 237 (1984) 77 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    T. Stelzer and S. Willenbrock, Spin correlation in top quark production at hadron colliders, Phys. Lett. B 374 (1996) 169 [hep-ph/9512292] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A polarized view of the top asymmetry, Phys. Rev. D 84 (2011) 074034 [arXiv:1105.3743] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant new physics in top pair production at hadron colliders, JHEP 03 (2011) 125 [arXiv:1010.6304] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of \( t\overline t \) production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    J. Cao, K. Hikasa, L. Wang, L. Wu and J.M. Yang, Testing new physics models by top charge asymmetry and polarization at the LHC, Phys. Rev. D 85 (2012) 014025 [arXiv:1109.6543] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    Y. Bai and Z. Han, Improving the top quark forward-backward asymmetry measurement at the LHC, JHEP 02 (2012) 135 [arXiv:1106.5071] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    A. Falkowski, G. Perez and M. Schmaltz, Spinning the top, arXiv:1110.3796 [INSPIRE].

  13. [13]

    E.L. Berger, Q.-H. Cao, C.-R. Chen, J.-H. Yu and H. Zhang, The top quark production asymmetries A FB and A FB, Phys. Rev. Lett. 108 (2012) 072002 [arXiv:1201.1790] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    J. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in tt production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    B. Grinstein, A.L. Kagan, J. Zupan and M. Trott, Flavor symmetric sectors and collider physics, JHEP 10 (2011) 072 [arXiv:1108.4027] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    J. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline t \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline t \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    O. Antunano, J.H. Kuhn and G. Rodrigo, Top quarks, axigluons and charge asymmetries at hadron colliders, Phys. Rev. D 77 (2008) 014003 [arXiv:0709.1652] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    P.H. Frampton, J. Shu and K. Wang, Axigluon as possible explanation for \( p\overline p \)\( t\overline t \) forward-backward asymmetry, Phys. Lett. B 683 (2010) 294 [arXiv:0911.2955] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in tt production at hadron colliders, Phys. Rev. D 84 (2011) 014024 [arXiv:1105.3333] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    G.M. Tavares and M. Schmaltz, Explaining the \( t\overline t \) asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011)228 [arXiv:1107.2120] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    K. Blum, Y. Hochberg and Y. Nir, Scalar-mediated \( t\overline t \) forward-backward asymmetry, JHEP 10 (2011)124 [arXiv:1107.4350] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. Shu, T.M. Tait and K. Wang, Explorations of the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    A. Arhrib, R. Benbrik and C.-H. Chen, Forward-backward asymmetry of top quark in diquark models, Phys. Rev. D 82 (2010) 034034 [arXiv:0911.4875] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the \( t\overline t \) forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in tt production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    CDF collaboration, T. Aaltonen et al., Evidence for a mass dependent forward-backward asymmetry in top quark pair production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    CDF collaboration, Y. Takeuchi et al., Measurement of the forward backward asymmetry in top pair production in the dilepton decay channel using 5.1 fb −1, CDF-Note-10398, http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/, Fermilab, Batavia U.S.A. (2011).

  36. [36]

    CDF collaboration, T. Schwarz et al., Combination of the forward-backward asymmetry in the top pair production from L + J and DIL channels using 5 fb −1, CDF-Note-10584, Fermilab, Batavia U.S.A. (2011).

  37. [37]

    CDF collaboration, S. Leone, Top quark production at the Tevatron, talk given at Moriond EWK, La Thuile Italy March 9 2012.

  38. [38]

    DØ collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, Phys. Rev. D 84 (2011) 112005 [arXiv:1107.4995] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    N. Kidonakis, The top quark rapidity distribution and forward-backward asymmetry, Phys. Rev. D 84 (2011) 011504 [arXiv:1105.5167] [INSPIRE].

    ADS  Google Scholar 

  44. [44]

    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D 84 (2011) 074004 [arXiv:1106.6051] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    A.V. Manohar and M. Trott, Electroweak Sudakov corrections and the top quark forward-backward asymmetry, Phys. Lett. B 711 (2012) 313 [arXiv:1201.3926] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt {s} = 7\;TeV \) using the ATLAS detector, ATLAS-CONF-2011-106, CERN, Geneva Switzerland (2011).

  49. [49]

    ATLAS collaboration, G. Aad et al., Measurement of the charge asymmetry in top quark pair production in pp collisions at s = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2039 [arXiv:1203.4211] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    CMS collaboration, Differential measurements of the charge asymmetry in top quark pair production, CMS-PAS-TOP-11-030, CERN, Geneva Switzerland (2011).

  51. [51]

    ATLAS collaboration, A. Krasznahorkay, Top physics results from ATLAS, presented at ASPEN 2012 Winter Conference, Aspen U.S.A. February 12 2012.

  52. [52]

    CDF collaboration, T. Aaltonen et al., Combination of CDF top quark pair production cross section measurements with up to 4.6 fb −1, CDF-Note-9913, Fermilab, Batavia U.S.A. (2009).

  53. [53]

    P. Baernreuther, M. Czakon and A. Mitov, Percent level precision physics at the Tevatron: first genuine NNLO QCD corrections to \( q\overline q \to t\overline t + X \), arXiv:1204.5201 [INSPIRE].

  54. [54]

    CDF collaboration, T. Aaltonen et al., First measurement of the tt differential cross section dσ/dM \( \left( {t\overline t } \right) \) in \( p\overline p \) collisions at \( \sqrt {s} = 1.96\;TeV \), Phys. Rev. Lett. 102 (2009) 222003 [arXiv:0903.2850] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Renormalization-group improved predictions for top-quark pair production at hadron colliders, JHEP 09 (2010) 097 [arXiv:1003.5827] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    ATLAS collaboration, Statistical combination of top quark pair production cross-section measurements using dilepton, single-lepton and all-hadronic final states at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, ATLAS-CONF-2012-024, CERN, Geneva Switzerland (2012).

  57. [57]

    CMS collaboration, Combination of top pair production cross section measurements, CMS-PAS-TOP-11-024, CERN, Geneva Switzerland (2011).

  58. [58]

    N. Kidonakis, Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution, Phys. Rev. D 82 (2010) 114030 [arXiv:1009.4935] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    ATLAS collaboration, A search for \( t\overline t \) resonances in the dilepton channel in 1.04 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \), ATLAS-CONF-2011-123, CERN, Geneva Switzerland (2011).

  60. [60]

    CMS collaboration, Search for heavy narrow resonances decaying to \( t\overline t \) in the muon + jets channel, CMS-PAS-EXO-11-055, CERN, Geneva Switzerland (2011).

  61. [61]

    CMS collaboration, S. Chatrchyan et al., Search for anomalous \( t\overline t \) production in the highly-boosted all-hadronic final state, arXiv:1204.2488 [INSPIRE].

  62. [62]

    J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    DØ collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline t \) production using a matrix element approach, Phys. Rev. Lett. 107 (2011) 032001 [arXiv:1104.5194] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    DØ collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline t \) production using dilepton final states, Phys. Lett. B 702 (2011) 16 [arXiv:1103.1871] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    CDF collaboration, Measurement of \( t\overline t \) spin correlations coefficient in 5.1 fb −1 dilepton candidates, CDF-Note-10719, Fermilab, Batavia U.S.A. (2011).

  66. [66]

    CDF collaboration, Measurement of \( t\overline t \) helicity fractions and spin correlation using reconstructed lepton + jets events, CDF-Note-10211, Fermilab, Batavia U.S.A. (2011).

  67. [67]

    DØ collaboration, V.M. Abazov et al., Evidence for spin correlation in \( t\overline t \) production, Phys. Rev. Lett. 108 (2012) 032004 [arXiv:1110.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    ATLAS collaboration, Measurement of spin correlation in \( t\overline t \) production from pp collisions at \( \sqrt {s} = 7\;TeV \) using the ATLAS detector,ATLAS-CONF-2011-117,CERN,Geneva Switzerland (2011).

  69. [69]

    ATLAS collaboration, G. Aad et al., Observation of spin correlation in tt events from pp collisions at s = 7 TeV using the ATLAS detector, Phys. Rev. Lett. 108 (2012) 212001 [arXiv:1203.4081] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    W. Bernreuther, A. Brandenburg, Z. Si and P. Uwer, Top quark pair production and decay at hadron colliders, Nucl. Phys. B 690 (2004) 81 [hep-ph/0403035] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top A FB with parity violation constraints, arXiv:1203.1320 [INSPIRE].

  72. [72]

    A. Martin, W. Stirling, R. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    K. Yan, J. Wang, D.Y. Shao and C.S. Li, Next-to-leading order QCD effect of W on top quark forward-backward asymmetry, Phys. Rev. D 85 (2012) 034020 [arXiv:1110.6684] [INSPIRE].

    ADS  Google Scholar 

  74. [74]

    H.X. Zhu, C.S. Li, D.Y. Shao, J. Wang and C. Yuan, Precise QCD predictions on top quark pair production mediated by massive color octet vector boson at hadron colliders, arXiv:1201.0672 [INSPIRE].

  75. [75]

    M.I. Gresham, I.-W. Kim and K.M. Zurek, On models of new physics for the Tevatron top A FB, Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    M.I. Gresham, I.-W. Kim and K.M. Zurek, Tevatron top A FB versus LHC top physics, Phys. Rev. D 85 (2012) 014022 [arXiv:1107.4364] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    CDF collaboration, T. Aaltonen et al., Observation of single top quark production and measurement of |V tb| with CDF, Phys. Rev. D 82 (2010) 112005 [arXiv:1004.1181] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    DØ collaboration, V.M. Abazov et al., Determination of the width of the top quark, Phys. Rev. Lett. 106 (2011) 022001 [arXiv:1009.5686] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    DØ collaboration, V.M. Abazov et al., An improved determination of the width of the top quark, Phys. Rev. D 85 (2012) 091104 [arXiv:1201.4156] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    CMS collaboration, S. Chatrchyan et al., Measurement of the t-channel single top quark production cross section in pp collisions at \( \sqrt {s} = 7\;TeV \), Phys. Rev. Lett. 107 (2011) 091802 [arXiv:1106.3052] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in 0.70 fb −1 of pp collisions at \( \sqrt {s} = 7\;TeV \) with the ATLAS detector, ATLAS-CONF-2011-101, CERN, Geneva Switzerland (2011).

  82. [82]

    T.A. Schwarz, Measurement of the front back asymmetry in top-antitop quark pairs produced in proton-antiproton collisions at center of mass energy = 1.96 TeV, FERMILAB-THESIS-2006-51, University of Michigan, Ann Arbor U.S.A. (2006) [INSPIRE].

  83. [83]

    D.D. Boline, Top quark mass in events with two charged leptons at the DØ experiment, Ph.D. thesis, Advisor U. Heintz, Boston university, Boston U.S.A. (2010) [INSPIRE].

  84. [84]

    Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC predictions from a Tevatron anomaly in the top quark forward-backward asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].

    ADS  Article  Google Scholar 

  85. [85]

    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping tt asymmetries at the Tevatron and the LHC, arXiv:1205.4721 [INSPIRE].

  86. [86]

    B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    A. Czarnecki, M. Jezabek and J.H. Kühn, Lepton spectra from decays of polarized top quarks, Nucl. Phys. B 351 (1991) 70 [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    A. Brandenburg, Z. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    S.J. Parke and Y. Shadmi, Spin correlations in top quark pair production at e + e colliders, Phys. Lett. B 387 (1996) 199 [hep-ph/9606419] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    G. Mahlon and S.J. Parke, Spin correlation effects in top quark pair production at the LHC, Phys. Rev. D 81 (2010) 074024 [arXiv:1001.3422] [INSPIRE].

    ADS  Google Scholar 

  91. [91]

    G. Mahlon and S.J. Parke, Maximizing spin correlations in top quark pair production at the Tevatron, Phys. Lett. B 411 (1997) 173 [hep-ph/9706304] [INSPIRE].

    ADS  Article  Google Scholar 

  92. [92]

    P. Uwer, Maximizing the spin correlation of top quark pairs produced at the Large Hadron Collider, Phys. Lett. B 609 (2005) 271 [hep-ph/0412097] [INSPIRE].

    ADS  Article  Google Scholar 

  93. [93]

    A.L. Kagan, J.F. Kamenik, G. Perez and S. Stone, Top LHCb physics, Phys. Rev. Lett. 107 (2011) 082003 [arXiv:1103.3747] [INSPIRE].

    ADS  Article  Google Scholar 

  94. [94]

    J.-F. Arguin, M. Freytsis and Z. Ligeti, Comment on measuring the \( t\overline t \) forward-backward asymmetry at ATLAS and CMS, Phys. Rev. D 84 (2011) 071504 [arXiv:1107.4090] [INSPIRE].

    ADS  Google Scholar 

  95. [95]

    J. Bagger, C. Schmidt and S. King, Axigluon production in hadronic collisions, Phys. Rev. D 37 (1988)1188 [INSPIRE].

    ADS  Google Scholar 

  96. [96]

    J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: constraints on extended models and implications for the tt asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jernej F. Kamenik.

Additional information

ArXiv ePrint: 1205.0264

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fajfer, S., Kamenik, J.F. & Melić, B. Discerning new physics in \( t\overline t \) production using top spin observables at hadron colliders. J. High Energ. Phys. 2012, 114 (2012). https://doi.org/10.1007/JHEP08(2012)114

Download citation

Keywords

  • Beyond Standard Model
  • Heavy Quark Physics