Skip to main content
Log in

Neutrinoless double-β decay in TeV scale left-right symmetric models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this paper we study in detail the neutrinoless double beta decay in left-right symmetric models with right-handed gauge bosons at TeV scale which is within the presently accessible reach of colliders. We discuss the different diagrams that can contribute to this process and identify the dominant ones for the case where the right-handed neutrino is also at the TeV scale. We calculate the contribution to the effective mass governing neutrinoless double beta decay assuming type-I, and type-II dominance and discuss what are the changes in the effective mass due to the additional contributions. We also discuss the effect of the recent Daya-Bay and RENO measurements on sin2 θ 13 on the effective mass in different scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Abazajian et al., Cosmological and astrophysical neutrino mass measurements, Astropart. Phys. 35 (2011) 177 [arXiv:1103.5083] [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Heidelberg-Moscow and GENIUS collaboration, H.V. Klapdor-Kleingrothaus, The HEIDELBERG-MOSCOW Ge-76 double beta experiment in Gran Sasso 1990–2003 and status of absolute neutrino mass (2004).

  4. W. Rodejohann, Neutrino-less double β decay and particle physics, Int. J. Mod. Phys. E 20 (2011) 1833 [arXiv:1106.1334] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T.T. Avignone III, S.R. Elliott and J. Engel, Double β decay, Majorana neutrinos and neutrino mass, Rev. Mod. Phys. 80 (2008) 481 [arXiv:0708.1033] [INSPIRE].

    Article  ADS  Google Scholar 

  6. J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal and M. Sorel, The search for neutrinoless double β decay, Riv. Nuovo Cim. 35 (2012) 29 [arXiv:1109.5515] [INSPIRE].

    Google Scholar 

  7. H.V. Klapdor-Kleingrothaus, To be or not to be? First evidence for neutrinoless double β decay, Int. J. Mod. Phys. A 18 (2003) 4113 [hep-ph/0303217] [INSPIRE].

    ADS  Google Scholar 

  8. H.V. Klapdor-Kleingrothaus, I. Krivosheina, A. Dietz and O. Chkvorets, Search for neutrinoless double beta decay with enriched Ge-76 in Gran Sasso 1990–2003, Phys. Lett. B 586 (2004) 198 [hep-ph/0404088] [INSPIRE].

    Article  ADS  Google Scholar 

  9. H. Klapdor-Kleingrothaus and I. Krivosheina, The evidence for the observation of 0nu beta beta decay: The identification of 0nu beta beta events from the full spectra, Mod. Phys. Lett. A 21 (2006) 1547 [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Mitra, G. Senjanović and F. Vissani, Neutrinoless double β decay and heavy sterile neutrinos, Nucl. Phys. B 856 (2012) 26 [arXiv:1108.0004] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Ibarra, E. Molinaro and S. Petcov, Low energy signatures of the TeV scale see-saw mechanism, Phys. Rev. D 84 (2011) 013005 [arXiv:1103.6217] [INSPIRE].

    ADS  Google Scholar 

  12. S. Pascoli and S. Petcov, Majorana neutrinos, neutrino mass spectrum and the \( \left| {\left\langle m \right\rangle } \right| \sim 10{ -^3} \) eV frontier in neutrinoless double β decay,Phys. Rev. D 77 (2008) 113003 [arXiv:0711.4993] [INSPIRE].

    ADS  Google Scholar 

  13. R.N. Mohapatra and J. Vergados, A new contribution to neutrinoless double β decay in gauge models, Phys. Rev. Lett. 47 (1981) 1713 [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Picciotto and M. Zahir, Neutrinoless double β decay in left-right symmetric models, Phys. Rev. D 26 (1982) 2320 [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Petcov, H. Sugiyama and Y. Takanishi, Neutrinoless double beta decay and H ±l ′± l ± decays in the Higgs triplet model, Phys. Rev. D 80 (2009) 015005 [arXiv:0904.0759] [INSPIRE].

    ADS  Google Scholar 

  16. R. Mohapatra, New contributions to neutrinoless double β decay in supersymmetric theories, Phys. Rev. D 34 (1986) 3457 [INSPIRE].

    ADS  Google Scholar 

  17. K. Babu and R. Mohapatra, New vector-scalar contributions to neutrinoless double beta decay and constraints on R-parity violation, Phys. Rev. Lett. 75 (1995) 2276 [hep-ph/9506354] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, Supersymmetry and neutrinoless double beta decay, Phys. Rev. D 53 (1996) 1329 [hep-ph/9502385] [INSPIRE].

    ADS  Google Scholar 

  19. M. Hirsch, H. Klapdor-Kleingrothaus and S. Kovalenko, New constraints on R-parity broken supersymmetry from neutrinoless double β decay, Phys. Rev. Lett. 75 (1995) 17 [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Faessler, S. Kovalenko and F. Simkovic, Bilinear R-parity violation in neutrinoless double β decay, Phys. Rev. D 58 (1998) 055004 [hep-ph/9712535] [INSPIRE].

    ADS  Google Scholar 

  21. H. Pas, M. Hirsch and H. Klapdor-Kleingrothaus, Improved bounds on SUSY accompanied neutrinoless double β decay, Phys. Lett. B 459 (1999) 450 [hep-ph/9810382] [INSPIRE].

    Article  ADS  Google Scholar 

  22. G. Bhattacharyya, H. Klapdor-Kleingrothaus, H. Pas and A. Pilaftsis, Neutrinoless double β decay from singlet neutrinos in extra dimensions, Phys. Rev. D 67 (2003) 113001 [hep-ph/0212169] [INSPIRE].

    ADS  Google Scholar 

  23. B. Allanach, C. Kom and H. Pas, Large Hadron Collider probe of supersymmetric neutrinoless double β decay mechanism, Phys. Rev. Lett. 103 (2009) 091801 [arXiv:0902.4697] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Tello, M. Nemevšek, F. Nesti, G. Senjanović and F. Vissani, Left-right symmetry: from LHC to neutrinoless double β decay, Phys. Rev. Lett. 106 (2011) 151801 [arXiv:1011.3522] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Nemevšek, F. Nesti, G. Senjanović and V. Tello, Neutrinoless double β decay: low left-right symmetry scale?, arXiv:1112.3061 [INSPIRE].

  26. V. Cirigliano, A. Kurylov, M. Ramsey-Musolf and P. Vogel, Neutrinoless double β decay and lepton flavor violation, Phys. Rev. Lett. 93 (2004) 231802 [hep-ph/0406199] [INSPIRE].

    Article  ADS  Google Scholar 

  27. W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].

    Article  ADS  Google Scholar 

  28. G. Senjanović, Seesaw at LHC through left-right symmetry, Int. J. Mod. Phys. A 26 (2011) 1469 [arXiv:1012.4104] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Hannestad, Primordial neutrinos, Ann. Rev. Nucl. Part. Sci. 56 (2006) 137 [hep-ph/0602058] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Senjanović and R.N. Mohapatra, Exact left-right symmetry and spontaneous violation of parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].

    ADS  Google Scholar 

  31. R. Mohapatra and J.C. Pati, A natural left-right symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].

    ADS  Google Scholar 

  32. R.N. Mohapatra and J.C. Pati, Left-right gauge symmetry and an isoconjugate model of CP-violation, Phys. Rev. D 11 (1975) 566 [INSPIRE].

    ADS  Google Scholar 

  33. P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].

    Article  ADS  Google Scholar 

  34. T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).

  35. S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargèse lectures, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980).

  36. M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P.van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).

  37. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  38. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  39. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  41. R. Foot and H. Lew, Unification of quarks and leptons at the TeV scale, Phys. Rev. D 42 (1990) 945 [INSPIRE].

    ADS  Google Scholar 

  42. R. Foot and G. Filewood, Implications of TeV scale SU(4) × SU(2) L × SU(2) R quark lepton-lepton unification, Phys. Rev. D 60 (1999) 115002 [hep-ph/9903374] [INSPIRE].

    ADS  Google Scholar 

  43. M. Frank, A. Hayreter and I. Turan, Production and decays of W R bosons at the LHC, Phys. Rev. D 83 (2011) 035001 [arXiv:1010.5809] [INSPIRE].

    ADS  Google Scholar 

  44. J. Esteves et al., Dark matter and LHC phenomenology in a left-right supersymmetric model, JHEP 01 (2012) 095 [arXiv:1109.6478] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.-Y. Chen and P.B. Dev, Multi-lepton collider signatures of heavy dirac and Majorana neutrinos, Phys. Rev. D 85 (2012) 093018 [arXiv:1112.6419] [INSPIRE].

    ADS  Google Scholar 

  46. J. Chakrabortty, J. Gluza, R. Sevillano and R. Szafron, Left-right symmetry at LHC and precise 1-loop low energy data, JHEP 07 (2012) 038 [arXiv:1204.0736] [INSPIRE].

    Article  ADS  Google Scholar 

  47. R.N. Mohapatra, Limits on the mass of the right-handed Majorana neutrino, Phys. Rev. D 34 (1986) 909 [INSPIRE].

    ADS  Google Scholar 

  48. M. Doi and T. Kotani, Neutrinoless modes of double β decay, Prog. Theor. Phys. 89 (1993) 139 [INSPIRE].

    Article  ADS  Google Scholar 

  49. M. Hirsch, H. Klapdor-Kleingrothaus and O. Panella, Double β decay in left-right symmetric models, Phys. Lett. B 374 (1996) 7 [hep-ph/9602306] [INSPIRE].

    Article  ADS  Google Scholar 

  50. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  51. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  52. G. Fogli, E. Lisi, A. Marrone, A. Palazzo and A. Rotunno, Evidence of θ 13 > 0 from global neutrino data analysis, Phys. Rev. D 84 (2011) 053007 [arXiv:1106.6028] [INSPIRE].

    ADS  Google Scholar 

  53. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, arXiv:1205.5254 [INSPIRE].

  54. G. Senjanović, Spontaneous breakdown of parity in a class of gauge theories, Nucl. Phys. B 153 (1979) 334 [INSPIRE].

    Article  ADS  Google Scholar 

  55. G. Beall, M. Bander and A. Soni, Constraint on the mass scale of a left-right symmetric electroweak theory from the K(L) K(S) mass difference, Phys. Rev. Lett. 48 (1982) 848 [INSPIRE].

    Article  ADS  Google Scholar 

  56. Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in minimal left-right symmetric model and constraints on the right-handed scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  57. A. Maiezza, M. Nemevšek, F. Nesti and G. Senjanović, Left-right symmetry at LHC, Phys. Rev. D 82 (2010) 055022 [arXiv:1005.5160] [INSPIRE].

    ADS  Google Scholar 

  58. M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First limits on left-right symmetry scale from LHC Data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [INSPIRE].

    ADS  Google Scholar 

  59. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

    ADS  Google Scholar 

  60. J. Kersten and A.Y. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

    ADS  Google Scholar 

  61. R. Adhikari and A. Raychaudhuri, Light neutrinos from massless texture and below TeV seesaw scale, Phys. Rev. D 84 (2011) 033002 [arXiv:1004.5111] [INSPIRE].

    ADS  Google Scholar 

  62. W. Grimus and L. Lavoura, The seesaw mechanism at arbitrary order: disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].

    Article  ADS  Google Scholar 

  63. Z.-z. Xing, Low-energy limits on heavy Majorana neutrino masses from the neutrinoless double-beta decay and non-unitary neutrino mixing, Phys. Lett. B 679 (2009) 255 [arXiv:0907.3014] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Chakrabortty.

Additional information

ArXiv ePrint: 1204.2527

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabortty, J., Devi, H.Z., Goswami, S. et al. Neutrinoless double-β decay in TeV scale left-right symmetric models. J. High Energ. Phys. 2012, 8 (2012). https://doi.org/10.1007/JHEP08(2012)008

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2012)008

Keywords

Navigation