Skip to main content
Log in

Electromagnetic signatures of a strongly coupled anisotropic plasma

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In heavy-ion collisions, quark-gluon plasma is likely to be produced with sizable initial pressure anisotropy, which may leave an imprint on electromagnetic observables. In order to model a strongly coupled anisotropic plasma, we use the AdS/CFT correspondence to calculate the current-current correlator of a weakly gauged U(1) subgroup of R symmetry in an \( \mathcal{N} = 4 \) super-Yang-Mills plasma with a (temporarily) fixed anisotropy. The dual geometry, obtained previously by Janik and Witaszczyk, contains a naked singularity which however permits purely infalling boundary conditions and therefore the usual definition of a retarded correlator. We obtain numerical results for the cases of wave vector parallel and orthogonal to the direction of anisotropy, and we compare with previous isotropic results. In the (unphysical) limit of vanishing frequency (infinite time) we obtain a vanishing DC conductivity for any amount of anisotropy, but the anisotropic AC conductivities smoothly approach the isotropic case in the limit of high frequencies. We also discuss hard photon production from an anisotropic plasma and compare with existing hard-loop resummed calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Arleo et al., Hard probes in heavy-ion collisions at the LHC: photon physics in heavy ion collisions at the LHC, Write up of the working group Photon Physics for the CERN Yellow Report on Hard Probes in Heavy Ion Collisions at the LHC, hep-ph/0311131 [SPIRES].

  2. P. Stankus, Direct photon production in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 55 (2005) 517 [SPIRES].

    Article  ADS  Google Scholar 

  3. P. Aurenche, F. Gelis, R. Kobes and H. Zaraket, Bremsstrahlung and photon production in thermal QCD, Phys. Rev. D 58 (1998) 085003 [hep-ph/9804224] [SPIRES].

    ADS  Google Scholar 

  4. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon emission from quark gluon plasma: Complete leading order results, JHEP 12 (2001) 009 [hep-ph/0111107] [SPIRES].

    Article  ADS  Google Scholar 

  5. P.B. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [SPIRES].

    Article  ADS  Google Scholar 

  6. J.-P. Blaizot and F. Gelis, Photon and dilepton production in the quark-gluon plasma: Perturbation theory vs lattice QCD, Eur. Phys. J. C 43 (2005) 375 [hep-ph/0504144] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [SPIRES].

    Article  Google Scholar 

  8. A. Parnachev and D.A. Sahakyan, Photoemission with Chemical Potential from QCD Gravity Dual, Nucl. Phys. B 768 (2007) 177 [hep-th/0610247] [SPIRES].

    Article  ADS  Google Scholar 

  9. D. Mateos and L. Patino, Bright branes for strongly coupled plasmas, JHEP 11 (2007) 025 [arXiv:0709.2168] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Nata Atmaja and K. Schalm, Photon and Dilepton Production in Soft Wall AdS/QCD, JHEP 08 (2010) 124 [arXiv:0802.1460] [SPIRES].

    Article  ADS  Google Scholar 

  11. B. Schenke and M. Strickland, Photon production from an anisotropic quark-gluon plasma, Phys. Rev. D 76 (2007) 025023 [hep-ph/0611332] [SPIRES].

    ADS  Google Scholar 

  12. A. Ipp, A. DiPiazza, J. Evers and C.H. Keitel, Photon polarization as a probe for quark-gluon plasma dynamics, Phys. Lett. B 666 (2008) 315 [arXiv:0710.5700] [SPIRES].

    ADS  Google Scholar 

  13. M. Martinez and M. Strickland, Measuring QGP thermalization time with dileptons, Phys. Rev. Lett. 100 (2008) 102301 [arXiv:0709.3576] [SPIRES].

    Article  ADS  Google Scholar 

  14. M. Martinez and M. Strickland, Pre-equilibrium dilepton production from an anisotropic quark-gluon plasma, Phys. Rev. C 78 (2008) 034917 [arXiv:0805.4552] [SPIRES].

    ADS  Google Scholar 

  15. M. Martinez and M. Strickland, Suppression of forward dilepton production from an anisotropic quark-gluon plasma, Eur. Phys. J. C 61 (2009) 905 [arXiv:0808.3969] [SPIRES].

    Article  ADS  Google Scholar 

  16. L. Bhattacharya and P. Roy, Measuring isotropization time of quark-gluon-Plasma from direct photon at RHIC, Phys. Rev. C 79 (2009) 054910 [arXiv:0812.1478] [SPIRES].

    ADS  Google Scholar 

  17. L. Bhattacharya and P. Roy, Rapidity distribution of photons from an anisotropic quark-gluon-Plasma, Phys. Rev. C 81 (2010) 054904 [arXiv:0907.3607] [SPIRES].

    ADS  Google Scholar 

  18. P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [SPIRES].

    ADS  Google Scholar 

  19. M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt {{{s_{NN}}}} = 200 \) GeV, Phys. Rev. C 78 (2008) 034915 [arXiv:0804.4015] [SPIRES].

    ADS  Google Scholar 

  20. M. Martinez and M. Strickland, Dissipative Dynamics of Highly Anisotropic Systems, Nucl. Phys. A 848 (2010) 183 [arXiv:1007.0889] [SPIRES].

    ADS  Google Scholar 

  21. M. Martinez and M. Strickland, Non-boost-invariant anisotropic dynamics, Nucl. Phys. A 856 (2011) 68 [arXiv:1011.3056] [SPIRES].

    ADS  Google Scholar 

  22. S. Mrowczynski, A. Rebhan and M. Strickland, Hard-loop effective action for anisotropic plasmas, Phys. Rev. D 70 (2004) 025004 [hep-ph/0403256] [SPIRES].

    ADS  Google Scholar 

  23. A. Rebhan, P. Romatschke and M. Strickland, Hard-loop dynamics of non-Abelian plasma instabilities, Phys. Rev. Lett. 94 (2005) 102303 [hep-ph/0412016] [SPIRES].

    Article  ADS  Google Scholar 

  24. P.B. Arnold, G.D. Moore and L.G. Yaffe, The fate of non-abelian plasma instabilities in 3 + 1 dimensions, Phys. Rev. D 72 (2005) 054003 [hep-ph/0505212] [SPIRES].

    ADS  Google Scholar 

  25. A. Rebhan, P. Romatschke and M. Strickland, Dynamics of quark-gluon plasma instabilities in discretized hard-loop approximation, JHEP 09 (2005) 041 [hep-ph/0505261] [SPIRES].

    Article  ADS  Google Scholar 

  26. P.B. Arnold and G.D. Moore, QCD plasma instabilities: The nonabelian cascade, Phys. Rev. D 73 (2006) 025006 [hep-ph/0509206] [SPIRES].

    ADS  Google Scholar 

  27. D. Bödeker and K. Rummukainen, Non-abelian plasma instabilities for strong anisotropy, JHEP 07 (2007) 022 [arXiv:0705.0180] [SPIRES].

    Article  Google Scholar 

  28. P.B. Arnold and G.D. Moore, Non-Abelian Plasma Instabilities for Extreme Anisotropy, Phys. Rev. D 76 (2007) 045009 [arXiv:0706.0490] [SPIRES].

    ADS  Google Scholar 

  29. A. Ipp, A. Rebhan and M. Strickland, Non-Abelian plasma instabilities: SU(3) vs. SU(2), arXiv:1012.0298 [SPIRES].

  30. P. Romatschke and A. Rebhan, Plasma Instabilities in an Anisotropically Expanding Geometry, Phys. Rev. Lett. 97 (2006) 252301 [hep-ph/0605064] [SPIRES].

    Article  ADS  Google Scholar 

  31. A. Rebhan, M. Strickland and M. Attems, Instabilities of an anisotropically expanding non-Abelian plasma: 1D + 3V discretized hard-loop simulations, Phys. Rev. D 78 (2008) 045023 [arXiv:0802.1714] [SPIRES].

    ADS  Google Scholar 

  32. A. Rebhan and D. Steineder, Collective modes and instabilities in anisotropically expanding ultarelativistic plasmas, Phys. Rev. D 81 (2010) 085044 [arXiv:0912.5383] [SPIRES].

    ADS  Google Scholar 

  33. A. Ipp, C.H. Keitel and J. Evers, Yoctosecond photon pulses from quark-gluon plasmas, Phys. Rev. Lett. 103 (2009) 152301 [arXiv:0904.4503] [SPIRES].

    Article  ADS  Google Scholar 

  34. R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP 09 (2008) 026 [arXiv:0806.2141] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  35. R.A. Janik and R.B. Peschanski, Asymptotic perfect fluid dynamics as a consequence of AdS/CFT, Phys. Rev. D 73 (2006) 045013 [hep-th/0512162] [SPIRES].

    ADS  MathSciNet  Google Scholar 

  36. Y.V. Kovchegov and A. Taliotis, Early time dynamics in heavy ion collisions from AdS/CFT correspondence, Phys. Rev. C 76 (2007) 014905 [arXiv:0705.1234] [SPIRES].

    ADS  Google Scholar 

  37. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  38. P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock W aves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [SPIRES].

    ADS  Google Scholar 

  40. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [SPIRES].

    Article  ADS  Google Scholar 

  41. P.M. Chesler and L.G. Yaffe, Boost invariant flow, black hole formation and far-from-equilibrium dynamics in N = 4 supersymmetric Yang-Mills theory, Phys. Rev. D 82 (2010) 026006 [arXiv:0906.4426] [SPIRES].

    ADS  Google Scholar 

  42. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [SPIRES].

    Article  ADS  Google Scholar 

  43. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  44. M.P. Heller, R.A. Janik and R. Peschanski, Hydrodynamic Flow of the quark-gluon Plasma and Gauge/Gravity Correspondence, Acta Phys. Polon. B 39 (2008) 3183 [arXiv:0811.3113] [SPIRES].

    ADS  Google Scholar 

  45. G. Beuf, M.P. Heller, R.A. Janik and R. Peschanski, Boost-invariant early time dynamics from AdS/CFT, JHEP 10 (2009) 043 [arXiv:0906.4423] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  46. P. Romatschke and M. Strickland, Collective Modes of an Anisotropic quark-gluon Plasma, Phys. Rev. D 68 (2003) 036004 [hep-ph/0304092] [SPIRES].

    ADS  Google Scholar 

  47. D.T. Son and A.O. Starinets, Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  48. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality, Phys. Rev. Lett. 101 (2008) 081601 [arXiv:0805.0150] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  49. K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP 05 (2009) 085 [arXiv:0812.2909] [SPIRES].

    Article  ADS  Google Scholar 

  50. S. Caron-Huot, P.M. Chesler and D. Teaney, Fluctuation, dissipation and thermalization in non-equilibrium AdS 5 black hole geometries, Phys. Rev. D 84 (2011) 026012 [arXiv:1102.1073] [SPIRES].

    ADS  Google Scholar 

  51. D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, arXiv:1105.3472 [SPIRES].

  52. D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [SPIRES].

    Article  ADS  Google Scholar 

  53. T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Rebhan.

Additional information

ArXiv ePrint: 1106.3539

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebhan, A., Steineder, D. Electromagnetic signatures of a strongly coupled anisotropic plasma. J. High Energ. Phys. 2011, 153 (2011). https://doi.org/10.1007/JHEP08(2011)153

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2011)153

Keywords

Navigation